Patents by Inventor Joseph A. Orr

Joseph A. Orr has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070261498
    Abstract: A system for sensing respiratory pressure includes a portable pressure transducer configured to be carried by or proximate to a respiratory conduit, such as a breathing circuit or a nasal canula. The portable pressure transducer may removably couple with a pneumotach, in the form of an airway adapter, disposed along the respiratory conduit. The pneumotach may include two pressure ports positioned at opposite sides of an obstruction, which partially blocks flow through a primary conduit of the pneumotach. Corresponding sample conduits of the portable pressure transducer removably couple with the pressure ports. The pressure ports may have sealing elements which are configured to seal against piercing members of the sample conduits upon introduction of the piercing members therethrough. Upon removal of the piercing members, the sealing elements substantially reseal. Methods for using the system are also disclosed.
    Type: Application
    Filed: February 12, 2007
    Publication date: November 15, 2007
    Applicant: RIC Investments, LLC.
    Inventors: Joseph Orr, Scott Kofoed, Kevin Durst
  • Publication number: 20070225612
    Abstract: A system for measuring a metabolic parameter. The system includes an integrated airway adapter capable of monitoring any combination of respiratory flow, O2 concentration, and concentrations of one or more of CO2, N2O, and an anesthetic agent in real time, breath by breath. Respiratory flow may be monitored with differential pressure flow meters under diverse inlet conditions through improved sensor configurations which minimize phase lag and dead space within the airway. Molecular oxygen concentration may be monitored by way of luminescence quenching techniques. Infrared absorption techniques may be used to monitor one or more of CO2, N2O, and anesthetic agents.
    Type: Application
    Filed: February 1, 2007
    Publication date: September 27, 2007
    Inventors: Leslie Mace, Joseph Orr, David Rich, Michael Jaffe, Jason Alderete
  • Patent number: 7174789
    Abstract: A system for sensing respiratory pressure includes a portable pressure transducer configured to be carried by or proximate to a respiratory conduit, such as a breathing circuit or a nasal canula. The portable pressure transducer may removably couple with a pneumotach, in the form of an airway adapter, disposed along the respiratory conduit. The pneumotach may include two pressure ports positioned at opposite sides of an obstruction, which partially blocks flow through a primary conduit of the pneumotach. Corresponding sample conduits of the portable pressure transducer removably couple with the pressure ports. The pressure ports may have sealing elements which are configured to seal against piercing members of the sample conduits upon introduction of the piercing members therethrough. Upon removal of the piercing members, the sealing elements substantially reseal. Methods for using the system are also disclosed.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: February 13, 2007
    Assignee: RIC Investments, LLC
    Inventors: Joseph A Orr, Scott A Kofoed, Kevin Durst
  • Patent number: 7135001
    Abstract: A differential Fick technique including a first phase in which baseline breathing parameters may be established and a second phase in which a change in the effective ventilation of a patient is induced. The durations of the first and second phases may be substantially the same and may be abbreviated relative to the durations of comparable phases of previously known differential Fick techniques. The disclosed differential Fick technique also lacks a recovery period in which the respiratory parameters of a patient are permitted to return to “normal” levels.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: November 14, 2006
    Assignee: RIC Investments, LLC
    Inventors: Joseph A. Orr, Kai Kuck, Lara Brewer
  • Publication number: 20060253038
    Abstract: Methods for estimating the volume of the carbon dioxide stores of an individual's respiratory tract include determining a carbon dioxide store volume at which a correlation between corresponding signals of carbon dioxide elimination and an indicator of the content of carbon dioxide in blood of the individual is optimized. The estimate of the volume of carbon dioxide stores, which comprises a model of the respiratory tract, or lungs, of the individual, may be used as a transformation to improve the accuracy of one or both of the carbon dioxide elimination and carbon dioxide content signals. Transformation, or filtering, algorithms are also disclosed, as are systems in which the methods and algorithms may be used. The methods, algorithms, and systems may be used to accurately and noninvasively determine one or both of the pulmonary capillary blood flow and cardiac output of the individual.
    Type: Application
    Filed: July 10, 2006
    Publication date: November 9, 2006
    Inventors: Kai Kuck, Joseph Orr, Lara Brewer
  • Patent number: 7074196
    Abstract: Methods for estimating the volume of the carbon dioxide stores of an individual's respiratory tract include determining a carbon dioxide store volume at which a correlation between corresponding signals of carbon dioxide elimination and an indicator of the content of carbon dioxide in blood of the individual is optimized. The estimate of the volume of carbon dioxide stores, which comprises a model of the respiratory tract, or lungs, of the individual, may be used as a transformation to improve the accuracy of one or both of the carbon dioxide elimination and carbon dioxide content signals. Transformation, or filtering, algorithms are also disclosed, as are systems in which the methods and algorithms may be used. The methods, algorithms, and systems may be used to accurately and noninvasively determine one or both of the pulmonary capillary blood flow and cardiac output of the individual.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: July 11, 2006
    Assignee: Respironics, Inc.
    Inventors: Kai Kück, Joseph A. Orr, Lara Brewer
  • Publication number: 20060129054
    Abstract: Methods for non-invasively determining the cardiac output or pulmonary capillary blood flow of a subject include monitoring the subject's respiration during two ventilatory states. Such a method may include determining parameters of at least one of the ventilatory states based on one or more characteristics of the subject. Data obtained from monitoring the subject's respiration, such as an amount of gas present in exhaled gases and respiratiory flow, may be used to estimate respiratory or blood gas parameters, such as an amount of gas exchanged between blood and gases in the subject's lungs or an indicator of a content of the gas in the subject's blood.
    Type: Application
    Filed: February 3, 2006
    Publication date: June 15, 2006
    Inventors: Joseph Orr, Michael Jaffe, Scott Kofoed, Dwayne Westenskow
  • Publication number: 20060129055
    Abstract: Methods for noninvasively determining a pulmonary capillary blood flow or a cardiac output of a subject include determining data of the amount of gas exchanged between blood and gas in lungs of the subject, as well as data of an indicator of the content of the gas in blood of the subject. Such a determination may be made during two or more different states of ventilation. A geometric relationship is identified between data points, with any data points outlying the geometric relationship being disregarded. The remaining data points may be used to estimate or calculate a measure of pulmonary capillary blood flow or cardiac output. Systems that include elements that are configured to effect such methods are also disclosed.
    Type: Application
    Filed: February 3, 2006
    Publication date: June 15, 2006
    Inventors: Joseph Orr, Kai Kuck
  • Publication number: 20060117856
    Abstract: A system for sensing respiratory pressure includes a portable pressure transducer configured to be carried by or proximate to a respiratory conduit, such as a breathing circuit or a nasal canula. The portable pressure transducer may removably couple with a pneumotach, in the form of an airway adapter, disposed along the respiratory conduit. The pneumotach may include two pressure ports positioned at opposite sides of an obstruction, which partially blocks flow through a primary conduit of the pneumotach. Corresponding sample conduits of the portable pressure transducer removably couple with the pressure ports. The pressure ports may have sealing elements which are configured to seal against piercing members of the sample conduits upon introduction of the piercing members therethrough. Upon removal of the piercing members, the sealing elements substantially reseal. Methods for using the system are also disclosed.
    Type: Application
    Filed: November 21, 2005
    Publication date: June 8, 2006
    Applicant: RIC Investments, LLC.
    Inventors: Joseph Orr, Scott Kofoed, Kevin Durst
  • Publication number: 20060111749
    Abstract: A basic life support system (BLSS) includes a processing element and an output element, such as a display screen or an audio output element, for providing an individual with real-time instructions on providing emergency medical care to a patient until paramedics or other healthcare professionals arrive to take over care for the patient. The instructions may be provided as graphics, including animations, as text, audibly, or as a combination of visible and audible elements. The BLSS may be configured for providing emergency medical care to individuals who have suffered from ventricular fibrillation. Accordingly, the BLSS may also include a defibrillation apparatus, an air or oxygen supply, a respiratory interface, one or more sensors, or a combination thereof.
    Type: Application
    Filed: June 20, 2005
    Publication date: May 25, 2006
    Inventors: Dwayne Westenskow, Joseph Orr, Noah Syroid, Daniel Snell, James Agutter, Frank Drews, Srinath Lingutta, Santosh Balakrishnan, Kai Kuck, Lara Brewer
  • Patent number: 7043855
    Abstract: A treating device for use with a fabric article drying appliance. The treating device dispenses a benefit composition into a chamber so as to provide benefits to fabric articles contained within the fabric article drying appliance. The treating device is comprised of at least two housings in communication with one another wherein at least one housing is located in the interior of a fabric article drying appliance and at least one housing is located outside of the fabric article drying appliance.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: May 16, 2006
    Assignee: The Procter & Gamble Company
    Inventors: Laura Lynn Heilman, Christopher Lawrence Smith, Keith David Fanta, Paul Amaat Raymond Gerard France, Dean Larry Du Val, Michael Joseph Orr, Jichun Shi
  • Patent number: 7025731
    Abstract: A method for noninvasively determining the pulmonary capillary blood flow or cardiac output of a patient includes measurement of respiratory flow and carbon dioxide pressure of the patient's breathing. These measurements are used to calculate carbon dioxide elimination and an indicator of the carbon dioxide content of the patient's blood. A geometric relationship between the carbon dioxide elimination data and the data of the indicator of carbon dioxide content is determined. At least one set of the data is modified and at least one other determination of a geometric relationship between the data is made to find the most accurate data set. The data may be modified by filtering or clustering. A slope of at least a portion of the geometric relationship is then used to determine the pulmonary capillary blood flow or cardiac output of the patient.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: April 11, 2006
    Assignee: Ric Investments, Inc.
    Inventors: Joseph A. Orr, Kai Kück
  • Patent number: 7018340
    Abstract: Apparatus and methods for non-invasively determining the cardiac output or pulmonary capillary blood flow of a patient using partial re-breathing techniques. The apparatus includes a substantially instantaneously adjustable deadspace volume for accommodating differences in sizes or breathing capacities of various patients. The apparatus may be constructed of inexpensive elements, including one or more two-way valves, which render the apparatus very simple to use and inexpensive so that the unit may be employed as a disposable product. The method of the invention includes estimating the cardiac output or pulmonary capillary blood flow of a patient based on partial pressure of alveolar CO2, rather than on the partial pressure of end tidal CO2, as previously practiced. A computer program for calculating the cardiac output or pulmonary capillary blood flow of a patient is also disclosed.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: March 28, 2006
    Assignee: NTC Technology Inc.
    Inventors: Michael B. Jaffe, Joseph A. Orr, Scott A. Kofoed, Dwayne Westenskow
  • Publication number: 20060004297
    Abstract: Methods for noninvasively evaluating indicators of cardio-pulmonary performance of a subject, such as cardiac output, pulmonary capillary blood flow, and blood carbon dioxide content, include obtaining data of an expiratory carbon dioxide signal and comparing data generated by an algorithmic lung model to the data of the expiratory carbon dioxide signal of a subject. The variables that are input into the algorithmic lung model are adjusted until the data generated thereby reflects that of the measured expiratory carbon dioxide signal with a desired degree of accuracy. Once the algorithmic lung model replicates the data of the measured expiratory carbon dioxide signal with the desired degree of accuracy, one or more of the input values may be used to determine one or more of the cardiac output, pulmonary capillary blood flow, or a blood gas content of the subject from which the expiratory carbon dioxide signal was obtained.
    Type: Application
    Filed: June 10, 2005
    Publication date: January 5, 2006
    Inventors: Joseph Orr, Kai Kuck, Lara Brewer
  • Publication number: 20060000256
    Abstract: A test system for assessing the performance of an analyzer for a gas or an anesthetic agent includes a source of a calibration gas mixture, a valve for controlling flow of gas from the source, a low-pressure tube, a sample tube in communication with the low-pressure tube, and a connector for assembling the analyzer to the test system. The test system may also include a valve for diverting ambient air into the sample tube instead of the calibration gas mixture. Additionally, the test system may include one or more of a barometer, a flow meter, an analyzer for gas or anesthetic agents, a flow restriction system, and a relatively high pressure source. Methods for testing analyzers are also disclosed.
    Type: Application
    Filed: June 20, 2005
    Publication date: January 5, 2006
    Inventors: Joseph Orr, Scott Kofoed
  • Patent number: 6968741
    Abstract: A system for sensing respiratory pressure includes a portable pressure transducer configured to be carried by or proximate to a respiratory conduit, such as a breathing circuit or a nasal canula. The portable pressure transducer may removably couple with a pneumotach, in the form of an airway adapter, disposed along the respiratory conduit. The pneumotach may include two pressure ports positioned at opposite sides of an obstruction, which partially blocks flow through a primary conduit of the pneumotach. Corresponding sample conduits of the portable pressure transducer removably couple with the pressure ports. The pressure ports may have sealing elements which are configured to seal against piercing members of the sample conduits upon introduction of the piercing members therethrough. Upon removal of the piercing members, the sealing elements substantially reseal. Methods for using the system are also disclosed.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: November 29, 2005
    Assignee: Respironics, Inc.
    Inventors: Joseph A. Orr, Scott A. Kofoed, Kevin Durst
  • Publication number: 20050247316
    Abstract: An apparatus for reversing inhaled anesthesia includes a filter for removing one or more anesthetic agents from gases passing therethrough, as well as a component for elevating CO2 levels in gases that are to be inhaled by a subject. The CO2 level-elevating component facilitates an increase in the ventilation of the subject without resulting in a significant decrease in the subject's PaCO2 level and, thus, a decrease in the rate at which blood flows through the subject's brain. A method of reversing the effects of inhaled anesthesia includes increasing the rate of ventilation of an anesthetized subject while causing the subject to inhale gases with elevated amounts of CO2 and while filtering anesthetic agents from such gases.
    Type: Application
    Filed: May 6, 2005
    Publication date: November 10, 2005
    Inventor: Joseph Orr
  • Patent number: 6955651
    Abstract: Methods for estimating the volume of the carbon dioxide stores of an individual's respiratory tract include determining a carbon dioxide store volume at which a correlation between corresponding signals of carbon dioxide elimination and an indicator of the content of carbon dioxide in blood of the individual is optimized. The estimate of the volume of carbon dioxide stores, which comprises a model of the respiratory tract, or lungs, of the individual, may be used as a transformation to improve the accuracy of one or both of the carbon dioxide elimination and carbon dioxide content signals. Transformation, or filtering, algorithms are also disclosed, as are systems in which the methods and algorithms may be used. The methods, algorithms, and systems may be used to accurately and noninvasively determine one or both of the pulmonary capillary blood flow and cardiac output of the individual.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: October 18, 2005
    Assignee: Respironics, Inc.
    Inventors: Kai Kück, Joseph A. Orr, Lara Brewer
  • Publication number: 20050203432
    Abstract: Apparatus and methods for non-invasively determining cardiac output using partial re-breathing techniques are disclosed in which the apparatus is constructed with an instantaneously adjustable deadspace for accommodating differences in breathing capacities of various patients. The apparatus is constructed of inexpensive elements, including a single two-way valve which renders the apparatus very simple to use and inexpensive so that the unit may be readily disposable. The method of the invention provides a novel means of estimating cardiac output based on alveolar CO2 values rather than end-tidal CO2 values as previously practiced. A program for calculating cardiac output is also disclosed.
    Type: Application
    Filed: May 2, 2005
    Publication date: September 15, 2005
    Inventors: Joseph Orr, Scott Kofoed, Dwayne Westenskow, Michael Jaffe
  • Publication number: 20050177055
    Abstract: Methods for estimating the volume of the carbon dioxide stores of an individual's respiratory tract include determining a carbon dioxide store volume at which a correlation between corresponding signals of carbon dioxide elimination and an indicator of the content of carbon dioxide in blood of the individual is optimized. The estimate of the volume of carbon dioxide stores, which comprises a model of the respiratory tract, or lungs, of the individual, may be used as a transformation to improve the accuracy of one or both of the carbon dioxide elimination and carbon dioxide content signals. Transformation, or filtering, algorithms are also disclosed, as are systems in which the methods and algorithms may be used. The methods, algorithms, and systems may be used to accurately and noninvasively determine one or both of the pulmonary capillary blood flow and cardiac output of the individual.
    Type: Application
    Filed: April 8, 2005
    Publication date: August 11, 2005
    Inventors: Kai Kuck, Joseph Orr, Lara Brewer