Patents by Inventor Joseph Anthony Enke

Joseph Anthony Enke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11947348
    Abstract: An unmanned aerial vehicle (UAV) controller may have control elements configured to receive inputs from a user. A cover may be coupled to the controller. The cover may be movable between a closed position in which the control elements are covered and an open position in which the control elements are exposed. An antenna may be integrated in the cover. The antenna may be electrically connected to circuitry in the controller for communicating with a UAV. In some implementations, a conductive plane and/or an insulating plane may be integrated in the cover. In some implementations, a heatsink, a fan, and/or a support mechanism may be arranged on an under portion of the controller. In some implementations, a circuit board including a cutout may be arranged inside the controller.
    Type: Grant
    Filed: April 5, 2022
    Date of Patent: April 2, 2024
    Assignee: Skydio, Inc.
    Inventors: Benjamin Scott Thompson, Christopher Brian Grasberger, Patrick Allen Lowe, Asher Mendel Robbins-Rothman, Yevgeniy Kozlenko, Logan Sweet, Blair Williams, Joseph Anthony Enke
  • Patent number: 11933891
    Abstract: Target value detection for an unmanned aerial vehicle is described. The unmanned aerial vehicle includes a first transducer that transmits a first ultrasonic signal and receives a first ultrasonic response and a second transducer that transmits a second ultrasonic signal and receives a second ultrasonic response. The second transducer has a wider beam pattern than the first transducer. Determinations are made as to whether either or both of the first or second ultrasonic responses includes a target value within range areas associated with the respective beam patterns of the first and second transducers. A confidence value is generated based on the determinations. The target value is reflected from an object and the confidence value indicates a likelihood of a position of the unmanned aerial vehicle with respect to the object.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: March 19, 2024
    Assignee: GoPro, Inc.
    Inventors: Stepan Moskovchenko, Joseph Anthony Enke
  • Patent number: 11899447
    Abstract: An aerial vehicle comprises one or more sensors to environmental data, a communication system to receive control inputs from a user, two or more actuators, with each actuator coupled to a rotary wing. The aerial vehicle also comprises a controller to determine a mode of the aerial vehicle based on the environmental data and the control inputs, each mode indicating a set of flight characteristics for the aerial vehicle, generate a gain value based on the mode, the gain value, when used to modify power signals transmitted to actuators of the aerial vehicle, causes the aerial vehicle to conform within the indicated flight characteristics of the determined mode, generate an output signal modified by the gain value based on the input signal, and transmit a power signal based on the output signal to each actuator of the aerial vehicle.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: February 13, 2024
    Assignee: GoPro, Inc.
    Inventors: Benjamin Tankersley, Joseph Anthony Enke, Donald Allen Severns
  • Patent number: 11899472
    Abstract: Disclosed is a configuration to control automatic return of an aerial vehicle. The configuration stores a return location in a storage device of the aerial vehicle. The return location may correspond to a location where the aerial vehicle is to return. One or more sensors of the aerial vehicle are monitored during flight for detection of a predefined condition. When a predetermined condition is met a return path program may be loaded for execution to provide a return flight path for the aerial vehicle to automatically navigate to the return location.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: February 13, 2024
    Assignee: GoPro, Inc.
    Inventor: Joseph Anthony Enke
  • Publication number: 20230362436
    Abstract: The present teachings provide a system and method. The system and method include receiving images or video frames at a wireless receiver interface from a wireless transmitter. The system and method include performing decoder nudging while decoding the images or the video frames received by the wireless transmitter. Overclocking a display of a controller to an overclocked frequency. Outputting decoded images or decoded video frames to the display of the controller at the overclocked frequency.
    Type: Application
    Filed: July 12, 2023
    Publication date: November 9, 2023
    Inventors: Joseph Anthony Enke, Anupam Joshi
  • Publication number: 20230351656
    Abstract: A method includes determining an altitude of a camera of an aerial vehicle, determining a field of view (FOV) of a camera, generating a localized map, determining a relative position of the aerial vehicle on the localized map, and determining a relative heading of the aerial vehicle.
    Type: Application
    Filed: July 6, 2023
    Publication date: November 2, 2023
    Applicant: GoPro, Inc.
    Inventor: Joseph Anthony Enke
  • Publication number: 20230271702
    Abstract: An aerial vehicle, comprising: one or more motors, one or more sensors, and a flight sub-system. The one or more sensors configured to detect data. The flight sub-system includes an attitude controller module; a rate controller module; and a compensator module. The compensator module is configured to: determine a maximum RPM of the one or more motors or a maximum torque of the one or more motors; receive a torque vector from the rate controller module; determine a rotational speed of the one or more motors to generate a desired flight orientation based upon the torque vector; and consider sensor data from the one or more sensors to adjust the rotational speed of the one or more motors.
    Type: Application
    Filed: May 3, 2023
    Publication date: August 31, 2023
    Inventors: Joseph Anthony Enke, Benjamin Tankersley, Jean-Bernard Berteaux, Axel Murguet, Garance Bruneau
  • Patent number: 11711572
    Abstract: Disclosed is a system and method for reducing the total latency for transferring a frame from the low latency camera system mounted on an aerial vehicle to the display of the remote controller. The method includes reducing the latency through each of the modules of the system, i.e. through a camera module, an encoder module, a wireless interface transmission, wireless interface receiver module, a decoder module and a display module. To reduce the latency across the modules, methods such as overclocking the image processor, pipelining the frame, squashing the processed frame, using a fast hardware encoder that can perform slice based encoding, tuning the wireless medium using queue sizing, queue flushing, bitrate feedback, physical medium rate feedback, dynamic encoder parameter tuning and wireless radio parameter adjustment, using a fast hardware decoder that can perform slice based decoding and overclocking the display module are used.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: July 25, 2023
    Assignee: GoPro, Inc.
    Inventors: Joseph Anthony Enke, Anupam Joshi
  • Patent number: 11704852
    Abstract: A mapping system receives sensor data from an unmanned aerial vehicle. The mapping system further receives images from a camera of the unmanned aerial vehicle. The mapping system determines an altitude of the camera based on the sensor data. The mapping system calculates a footprint of the camera based on the altitude of the camera and a field of view of the camera. The mapping system constructs a localized map based on the images and the footprint of the camera.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: July 18, 2023
    Assignee: GoPro, Inc.
    Inventor: Joseph Anthony Enke
  • Patent number: 11673665
    Abstract: A controller system of an aerial vehicle may receive environmental data from one or more sensors of the aerial vehicle and adjusts limits of the aerial vehicle given the environmental conditions. When the aerial vehicle receives an input, such as a flight input from a remote controller or an environmental input such as a gust of wind, the controller system calculates appropriate motor inputs that are provided to the thrust motors of the aerial vehicle such that the adjusted limits of the aerial vehicle are not exceeded. In calculating the appropriate input to the thrust motors, the controller system performs an iterative process. For example, for a given maximum torque that can be applied to the thrust motors, the controller system iteratively allocates the torque such that torque components that are important for the stability of the aerial are first fulfilled, whereas subsequent torque components may be fulfilled or scaled back.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: June 13, 2023
    Assignee: GoPro, Inc.
    Inventors: Joseph Anthony Enke, Benjamin Tankersley, Jean-Bernard Berteaux, Axel Murguet, Garance Bruneau
  • Publication number: 20220326705
    Abstract: An unmanned aerial vehicle (UAV) controller may have control elements configured to receive inputs from a user. A cover may be coupled to the controller. The cover may be movable between a closed position in which the control elements are covered and an open position in which the control elements are exposed. An antenna may be integrated in the cover. The antenna may be electrically connected to circuitry in the controller for communicating with a UAV. In some implementations, a conductive plane and/or an insulating plane may be integrated in the cover. In some implementations, a heatsink, a fan, and/or a support mechanism may be arranged on an under portion of the controller. In some implementations, a circuit board including a cutout may be arranged inside the controller.
    Type: Application
    Filed: April 5, 2022
    Publication date: October 13, 2022
    Inventors: Benjamin Scott Thompson, Christopher Brian Grasberger, Patrick Allen Lowe, Asher Mendel Robbins-Rothman, Yevgeniy Kozlenko, Logan Sweet, Blair Williams, Joseph Anthony Enke
  • Publication number: 20220315240
    Abstract: Described herein are systems and methods using a security key for an unmanned aerial vehicle. For example, some methods include during flight of an unmanned aerial vehicle, encrypting, using a public key stored by the unmanned aerial vehicle, a symmetric key that is used to encrypt media data captured using one or more sensors of the unmanned aerial vehicle to obtain encrypted media data; landing the unmanned aerial vehicle; connecting a key device to the unmanned aerial vehicle via a serial port connector of the key device and a serial port connector of the unmanned aerial vehicle; while the key device is connected to the unmanned aerial vehicle, decrypting, using a private key stored on the key device, the encrypted symmetric key, which in turn is used to decrypt a portion of the encrypted media data to obtain decrypted media data; and transmitting a portion of the decrypted media data.
    Type: Application
    Filed: December 1, 2021
    Publication date: October 6, 2022
    Inventors: Brian Kubisiak, Joseph Anthony Enke, Ryan Hornung, Stepan Moskovchenko
  • Publication number: 20220066439
    Abstract: An aerial vehicle comprises one or more sensors to environmental data, a communication system to receive control inputs from a user, two or more actuators, with each actuator coupled to a rotary wing. The aerial vehicle also comprises a controller to determine a mode of the aerial vehicle based on the environmental data and the control inputs, each mode indicating a set of flight characteristics for the aerial vehicle, generate a gain value based on the mode, the gain value, when used to modify power signals transmitted to actuators of the aerial vehicle, causes the aerial vehicle to conform within the indicated flight characteristics of the determined mode, generate an output signal modified by the gain value based on the input signal, and transmit a power signal based on the output signal to each actuator of the aerial vehicle.
    Type: Application
    Filed: November 8, 2021
    Publication date: March 3, 2022
    Inventors: Benjamin Tankersley, Joseph Anthony Enke, Donald Allen Severns
  • Publication number: 20220046321
    Abstract: Disclosed is a system and method for reducing the total latency for transferring a frame from the low latency camera system mounted on an aerial vehicle to the display of the remote controller. The method includes reducing the latency through each of the modules of the system, i.e. through a camera module, an encoder module, a wireless interface transmission, wireless interface receiver module, a decoder module and a display module. To reduce the latency across the modules, methods such as overclocking the image processor, pipelining the frame, squashing the processed frame, using a fast hardware encoder that can perform slice based encoding, tuning the wireless medium using queue sizing, queue flushing, bitrate feedback, physical medium rate feedback, dynamic encoder parameter tuning and wireless radio parameter adjustment, using a fast hardware decoder that can perform slice based decoding and overclocking the display module are used.
    Type: Application
    Filed: August 17, 2021
    Publication date: February 10, 2022
    Inventors: Joseph Anthony Enke, Anupam Joshi
  • Publication number: 20210354822
    Abstract: A controller system of an aerial vehicle may receive environmental data from one or more sensors of the aerial vehicle and adjusts limits of the aerial vehicle given the environmental conditions. When the aerial vehicle receives an input, such as a flight input from a remote controller or an environmental input such as a gust of wind, the controller system calculates appropriate motor inputs that are provided to the thrust motors of the aerial vehicle such that the adjusted limits of the aerial vehicle are not exceeded. In calculating the appropriate input to the thrust motors, the controller system performs an iterative process. For example, for a given maximum torque that can be applied to the thrust motors, the controller system iteratively allocates the torque such that torque components that are important for the stability of the aerial are first fulfilled, whereas subsequent torque components may be fulfilled or scaled back.
    Type: Application
    Filed: May 27, 2021
    Publication date: November 18, 2021
    Inventors: Joseph Anthony Enke, Benjamin Tankersley, Jean-Bernard Berteaux, Axel Murguet, Garance Bruneau
  • Patent number: 11169516
    Abstract: An aerial vehicle comprises one or more sensors to environmental data, a communication system to receive control inputs from a user, two or more actuators, with each actuator coupled to a rotary wing. The aerial vehicle also comprises a controller to determine a mode of the aerial vehicle based on the environmental data and the control inputs, each mode indicating a set of flight characteristics for the aerial vehicle, generate a gain value based on the mode, the gain value, when used to modify power signals transmitted to actuators of the aerial vehicle, causing the aerial vehicle to conform within the indicated flight characteristics of the determined mode, generate an output signal modified by the gain value based on the input signal, and transmit a power signal based on the output signal to each actuator of the aerial vehicle.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: November 9, 2021
    Assignee: GoPro, Inc.
    Inventors: Benjamin Tankersley, Joseph Anthony Enke, Donald Allen Severns
  • Publication number: 20210273815
    Abstract: Described herein are systems for the production, communication, routing, service, authentication, and consumption of cryptographically authenticable contextual content produced by cryptographically authenticable devices; example implementations of the architecture for a Trusted Contextual Content Device which produces Trusted Contextual Content; and example implementations of the architecture for a Trusted Drone Device which produces Trusted Contextual Content. For example, some of the methods used may include accessing a first set of sensor data from one or more sensors; receiving, a first trusted contextual content that includes a first digital signature; generating a data structure including the first trusted contextual content and data based on the first set of sensor data; signing the data structure using a signing key to generate a second trusted contextual content including a second digital signature; and storing or transmitting the second trusted contextual content.
    Type: Application
    Filed: May 17, 2021
    Publication date: September 2, 2021
    Inventors: Joseph Anthony Enke, Stepan Moskovchenko
  • Publication number: 20210264652
    Abstract: A mapping system receives sensor data from an unmanned aerial vehicle. The mapping system further receives images from a camera of the unmanned aerial vehicle. The mapping system determines an altitude of the camera based on the sensor data. The mapping system calculates a footprint of the camera based on the altitude of the camera and a field of view of the camera. The mapping system constructs a localized map based on the images and the footprint of the camera.
    Type: Application
    Filed: March 12, 2021
    Publication date: August 26, 2021
    Inventor: Joseph Anthony Enke
  • Patent number: 11102544
    Abstract: Disclosed is a system and method for reducing the total latency for transferring a frame from the low latency camera system mounted on an aerial vehicle to the display of the remote controller. The method includes reducing the latency through each of the modules of the system, i.e. through a camera module, an encoder module, a wireless interface transmission, wireless interface receiver module, a decoder module and a display module. To reduce the latency across the modules, methods such as overclocking the image processor, pipelining the frame, squashing the processed frame, using a fast hardware encoder that can perform slice based encoding, tuning the wireless medium using queue sizing, queue flushing, bitrate feedback, physical medium rate feedback, dynamic encoder parameter tuning and wireless radio parameter adjustment, using a fast hardware decoder that can perform slice based decoding and overclocking the display module are used.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: August 24, 2021
    Assignee: GoPro, Inc.
    Inventors: Joseph Anthony Enke, Anupam Joshi
  • Publication number: 20210245877
    Abstract: A pipeline in a controller may be configured to interface between sensors and actuators. The pipeline may elements such as drivers, filters, a combine, estimators, controllers, a mixer, and actuator controllers. The drivers may receive sensor data and pre-process the received sensor data. The filters may filter the pre-processed sensor data to generate filtered sensor data. The combine may package the filtered sensor data to generate packaged sensor data. The estimators may determine estimates of a position of a vehicle based on the packaged sensor data. The controllers may generate control signals based on the determined estimates. The mixer may modify the generated control signals based on limitations of the vehicle. The actuator controllers may generate actuator control signals based on the modified control signals to drive the actuators.
    Type: Application
    Filed: February 23, 2021
    Publication date: August 12, 2021
    Inventor: Joseph Anthony Enke