Patents by Inventor Joseph M. Falkowski

Joseph M. Falkowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11939225
    Abstract: A composition can include a Rho zeolite with a RHO topology having a Si to B ratio or a Si to Al ratio greater than or equal to 8. Making such a composition can include heating an aqueous reaction mixture having a molar ratio of atomic Si to atomic B of about 4 to about 50 or a molar ratio of atomic Si to atomic Al of about 4 to about 50 in the presence of a C4-C6 diquat of N,2-dimethylbenzimidazole structure directing agent to a temperature of at least 75° C. to produce a Rho zeolite.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: March 26, 2024
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Joseph M. Falkowski, Hilda Bouza Vroman, Allen W. Burton, Eugene Terefenko, Kanmi Mao, Karl G. Strohmaier
  • Publication number: 20240051898
    Abstract: A process for producing an alkylaromatic compound comprises providing a first feed comprising an alkylatable aromatic compound and a second feed comprising an alkylating agent, wherein at least the first feed contains an impurity compound comprising at least one of nitrogen, halogens, oxygen, sulfur, arsenic, selenium, tellurium, phosphorus, and Group 1 through Group 12 metals The first feed is passed through an adsorbent comprising a metal-organic framework material under conditions effective to reduce the amount of impurity compound in the first feed and produce a purified first feed. The purified first feed and at least part of the second feed are then contacted with an alkylation catalyst composition under alkylation conditions effective to convert at least part of the alkylatable aromatic compound in the purified first feed to the desired alkylaromatic compound and produce an alkylation effluent.
    Type: Application
    Filed: September 30, 2020
    Publication date: February 15, 2024
    Inventors: Joseph M. Falkowski, Ivy D. Johnson
  • Patent number: 11891407
    Abstract: Provided herein are methods of novel methods of synthesizing a metal-organic framework system by vapor-phase appending of a plurality of ligands appended to a metal-organic framework. Also, provided are methods of recycling metal-organic framework systems by detaching the ligand and re-appending the same ligand or appending a different ligand to the metal-organic framework to provide a recycled or repurposed metal-organic framework system.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: February 6, 2024
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Carter W. Abney, Joseph M. Falkowski, Mary S. Abdulkarim, Anna C. Ivashko, Julie J. Seo, Aaron W. Peters, Matthew T. Kapelewski, Gerardo J. Majano Sanchez, Wesley Sattler, Simon C. Weston
  • Publication number: 20240010506
    Abstract: An aluminosilicate zeolite may have a molar ratio of Si to Al of about 3 to about 10, a monoclinic space group C2/m with unit cell dimensions of a of 13.6 ?+/?5%, b of 21.7 ?+/?5%, c of 6.7 ?+/?5%, and ? of 93°+/?3°, 12-ring pores along a c-axis having dimensions of 7 ?+/?5% by 6 ?+/?5%, and 8-ring pores along an a-axis having dimensions of 3 ?+/?5% by 3 ?+/?5%. Said aluminosilicate zeolites may be useful in hydrocarbon conversion processes, selective catalytic reduction of NOx, CO2 and/or N2 adsorption, carbonylation reactions, and the monoalkylamine and dialkylamine syntheses.
    Type: Application
    Filed: August 7, 2020
    Publication date: January 11, 2024
    Inventors: Allen W. Burton, Hilda B. Vroman, Joseph M. Falkowski
  • Patent number: 11865515
    Abstract: An active material useful in an oxidative dehydrogenation reactor system has an active phase, and a mixed metal oxide support phase. The active phase includes a transition metal oxide such as manganese oxide, which is reversibly oxidizable and/or reducible between oxidized and reduced states. The support phase includes a mixed metal oxide of a two or more IUPAC Group 2-14 elements. The active phase can also include a promoter such as Na-WO4 and/or a selectivity modifier such as Al or ceria. Also, a reactor including the active material in a reactor, a method of making the active material, and a method of using the active material in a regenerative reaction process.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: January 9, 2024
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Brian M. Weiss, Sophie Liu, Joseph M. Falkowski, Marc R. Schreier, Herb W. Barry
  • Publication number: 20230357650
    Abstract: A process for separating one or more one-ring cycloparaffins and one or more multi-ring cycloparaffins from a hydrocarbon mixture is disclosed. The process comprises the steps of providing the hydrocarbon mixture; and contacting the hydrocarbon mixture with an adsorbent material comprising a metal organic framework to separate the one or more one-ring cycloparaffins and the one or more multi-ring cycloparaffins from the hydrocarbon mixture. The process is conducted in a liquid phase.
    Type: Application
    Filed: July 22, 2020
    Publication date: November 9, 2023
    Inventors: Changyub Paek, Joseph M. Falkowski, Randall D. Partridge, Yogesh V. Joshi, Carmen C. Lasso
  • Publication number: 20230287278
    Abstract: This disclosure provides methods for separating multi-ring naphthenes from a hydrocarbon feedstock. The hydrocarbon feedstock includes at least normal paraffins, isoparaffins, 1-ring naphthenes attached with a paraffinic alkyl chain, and multi-ring naphthenes. The methods comprise passing the hydrocarbon feedstock and a solvent, at a temperature and pressure through a bed of an adsorbent comprising a metal-organic framework (MOF) adsorbent, to adsorb the multi-ring naphthenes from the hydrocarbon feedstock, thereby producing a base stock product that is depleted in multi-ring naphthenes. The metal-organic framework adsorbent is a porous crystalline material comprised of metal functionalities connected by organic linkers to form a repeating 2-D or 3-D lattice. The base stock product has a viscosity index (VI) greater than the viscosity index of the hydrocarbon feedstock.
    Type: Application
    Filed: May 19, 2022
    Publication date: September 14, 2023
    Inventors: Changyub Paek, Joseph M. Falkowski, Yogesh V. Joshi, Carmen C. Lasso
  • Patent number: 11739274
    Abstract: A hydrocarbon feed stream, particularly one comprising heavier hydrocarbons, may be converted to valuable products such as motor gasoline and/or lubricating oil by employing one or more MOF catalysts, which may be prepared from a precursor metal-organic framework (MOF). A MOF catalyst may be prepared by exchanging one or more organic linking ligands of the precursor MOF for an organic linking ligand having a different acidity and/or electron-withdrawing properties, which, in turn, may affect catalytic activity.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: August 29, 2023
    Assignee: Exxon Mobil Technology and Engineering Company
    Inventors: Brandon J. O'Neill, Joseph M. Falkowski, Allen W. Burton, Scott J. Weigel
  • Publication number: 20230173463
    Abstract: An active material useful in an oxidative dehydrogenation reactor system has an active phase, and a mixed metal oxide support phase. The active phase includes a transition metal oxide such as manganese oxide, which is reversibly oxidizable and/or reducible between oxidized and reduced states. The support phase includes a mixed metal oxide of a two or more IUPAC Group 2-14 elements. The active phase can also include a promoter such as Na-WO4 and/or a selectivity modifier such as Al or ceria. Also, a reactor including the active material in a reactor, a method of making the active material, and a method of using the active material in a regenerative reaction process.
    Type: Application
    Filed: December 6, 2021
    Publication date: June 8, 2023
    Inventors: Brian M. Weiss, Sopie Liu, Joseph M. Falkowski, Marc R. Schreier, Herb W. Barry
  • Patent number: 11634371
    Abstract: A method for separating classes of hydrocarbon compounds from a feed stream including a hydrocarbon mixture is disclosed. The method includes the steps of passing a feed stream through a plurality of separation units arranged in a series in any order, wherein each separation unit has an adsorbent material; and separating classes of hydrocarbon compounds from the feed stream. When one of the plurality of separation units comprises an adsorbent material that is a metal organic framework selected from a zirconium, hafnium, cerium, or titanium-based metal organic framework, then another plurality of separation units includes an adsorption material that is different from the metal organic framework. The method is conducted in a liquid phase. The method can also use a single separation unit with a continuous cyclic bed apparatus. The method can be combined with refining and downstream processes.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: April 25, 2023
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Changyub Paek, Randall D. Partridge, Yogesh V. Joshi, Jayashree Kalyanaraman, Joseph M. Falkowski
  • Publication number: 20230121414
    Abstract: Methods of contacting a fluid comprising a light hydrocarbon with a metal-organic framework adsorbent having bis(pyrazolyl) ethanediimine ligands and internal pores; adsorbing the fluid in at least a portion of the internal pores of the metal-organic framework thereby creating an adsorbed fluid; storing the adsorbed fluid in the internal pores of the metal-organic framework; and releasing the adsorbed fluid from the internal pores of the metal-organic framework, wherein the metal-organic framework adsorbent undertakes a reversible phase transition upon adsorbing the fluid. Systems of a metal-organic framework having bis(pyrazolyl) ethanediimine ligands and internal pores, wherein the metal-organic framework undertakes a reversible phase transition upon adsorption and desorption of a light hydrocarbon fluid; wherein the fluid is stored in the internal pores of the metal-organic framework.
    Type: Application
    Filed: January 19, 2021
    Publication date: April 20, 2023
    Inventors: Pavel V. Kortunov, Joseph M. Falkowski
  • Publication number: 20220388853
    Abstract: A method of making a molecular sieve may include: reacting a source selected from the group consisting of: a source of a tetrahedral element in the presence of a structure directing agent (SDA) selected from the group consisting of: Ar+-L-Ar, Ar+-L-Ar-L-Ar+, Ar+-L-Ar-L-NR3+, and ArAr+-L-Ar+Ar, where Ar+ is to a N-containing cationic aromatic ring, Ar is to a non-charged aromatic ring, L is a methylene chain of 3-6 carbon atoms, NR3+ is to a quaternary ammonium, and ArAr+ and Ar+Ar are a fused aromatic ring structure comprising both a N-containing cationic portion and a non-charged portion, to produce the molecular sieve.
    Type: Application
    Filed: July 22, 2020
    Publication date: December 8, 2022
    Inventors: Allen W. Burton, Hilda B. Vroman, Joseph M. Falkowski, Eugene Terefenko, Michael A. Marella, Ross Mabon
  • Publication number: 20220380686
    Abstract: A hydrocarbon feed stream, particularly one comprising heavier hydrocarbons, may be converted to valuable products such as motor gasoline and/or lubricating oil by employing one or more large pore zeolitic catalysts, which may be prepared from a precursor zeolite. In some examples, a large pore zeolitic catalyst may be utilized to selectively reduce the endpoint of a hydrocarbon composition.
    Type: Application
    Filed: July 14, 2020
    Publication date: December 1, 2022
    Inventors: Brandon J. O'Neill, Joseph M. Falkowski, Allen W. Burton, Scott J. Weigel
  • Publication number: 20220370992
    Abstract: Metal-organic framework materials (MOFs) are highly porous entities comprising a multidentate organic ligand coordinated to multiple metal centers. MOFs having ambient condition stability may comprise a plurality of metal clusters comprising one or more M4O clusters (M is a metal), and a plurality of 4-pyrazolecarboxylate ligands coordinated to the plurality of metal clusters to define an at least partially crystalline network structure having a plurality of internal pores. The MOFs may have a Pa3 symmetry, which upon activation may convert into Fm3m symmetry.
    Type: Application
    Filed: May 28, 2020
    Publication date: November 24, 2022
    Inventors: Joseph M. Falkowski, Yogesh V. Joshi, Mary S. Abdulkarim, Simon C. Weston
  • Publication number: 20220305456
    Abstract: Metal-organic framework materials (MOFs) are highly porous entities comprising a multidentate organic ligand coordinated to multiple metal centers, typically as a coordination polymer. Some highly porous MOFs lack stability at ambient conditions. MOFs having ambient condition stability may comprise a plurality of metal clusters (M4O clusters, M=a metal), and a plurality of 4-(1H-pyrazol-4-yl)benzoate ligands coordinated to the plurality of metal clusters to define an at least partially crystalline network structure having a plurality of internal pores.
    Type: Application
    Filed: May 26, 2020
    Publication date: September 29, 2022
    Inventors: Joseph M. Falkowski, Yogesh V. Joshi, Mary S. Abdulkarim, Simon C. Weston
  • Publication number: 20220290057
    Abstract: A hydrocarbon feed stream, particularly one comprising heavier hydrocarbons, may be converted to valuable products such as motor gasoline and/or lubricating oil by employing one or more MOF catalysts, which may be prepared from a precursor metal-organic framework (MOF). A MOF catalyst may be prepared by exchanging one or more organic linking ligands of the precursor MOF for an organic linking ligand having a different acidity and/or electron-withdrawing properties, which, in turn, may affect catalytic activity.
    Type: Application
    Filed: July 14, 2020
    Publication date: September 15, 2022
    Inventors: Brandon J. O'Neill, Joseph M. Falkowski, Allen W. Burton, Scott J. Weigel
  • Publication number: 20220213125
    Abstract: Metal-organic frameworks (MOFs) are highly porous entities comprising a multidentate ligand coordinated to multiple metal atoms, typically as a coordination polymer. MOFs are usually produced in powder form. Extrusion of powder-form MOFs to produce shaped bodies has heretofore proven difficult due to loss of surface area and poor crush strength of MOF extrudates, in addition to phase transformations occurring during extrusion. The choice of mixing conditions and the mixing solvent when forming MOF extrudates can impact these factors. Extrudates comprising a MOF consolidated material may feature the MOF consolidated material having a BET surface area of about 50% or greater relative to that of a pre-crystallized MOF powder material used to form the extrudate. X-ray powder diffraction of the extrudate shows about 20% or less conversion of the MOF consolidated material into a phase differing from that of the pre-crystallized MOF powder material.
    Type: Application
    Filed: December 13, 2019
    Publication date: July 7, 2022
    Inventors: Gerardo J. Majano, Joseph M. Falkowski, Scott J. Weigel, Matthew T. Kapelewski, Pavel Kortunov
  • Patent number: 11364479
    Abstract: Disclosed are zeolitic imidazolate framework (ZIF) compositions in which at least a portion of the ligands in its shell have been exchanged with other ligands, and methods of making such shell-ligand-exchanged ZIFs. Also disclosed is the use of such shell-ligand-exchanged ZIFs in hydrocarbon separation processes.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: June 21, 2022
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Joseph M. Falkowski, Mobae Afeworki, David C. Calabro, Yi Du, Himanshu Gupta, Simon C. Weston
  • Publication number: 20220177393
    Abstract: A method for separating classes of hydrocarbon compounds from a feed stream including a hydrocarbon mixture is disclosed. The method includes the steps of passing a feed stream through a plurality of separation units arranged in a series in any order, wherein each separation unit has an adsorbent material; and separating classes of hydrocarbon compounds from the feed stream. When one of the plurality of separation units comprises an adsorbent material that is a metal organic framework selected from a zirconium, hafnium, cerium, or titanium-based metal organic framework, then another plurality of separation units includes an adsorption material that is different from the metal organic framework. The method is conducted in a liquid phase. The method can also use a single separation unit with a continuous cyclic bed apparatus. The method can be combined with refining and downstream processes.
    Type: Application
    Filed: December 6, 2021
    Publication date: June 9, 2022
    Inventors: Changyub Paek, Randall D. Partridge, Yogesh V. Joshi, Jayashree Kalyanaraman, Joseph M. Falkowski
  • Publication number: 20220176343
    Abstract: Provided herein are adsorption materials comprising a mixed-metal mixed-organic framework comprising metal ions of two or more distinct metals and a plurality of organic linkers. Each organic linker in the plurality of organic linkers is connected to a metal ion. The adsorption material further comprises a plurality of ligands. In an aspect, each respective ligand in the plurality of ligands is an amine or other Lewis base (electron donor) appended to a metal ion in the two of more distinct elements of the mixed-metal organic framework to provide a mixed-metal mixed-organic framework system.
    Type: Application
    Filed: April 24, 2020
    Publication date: June 9, 2022
    Inventors: Simon C. Weston, Carter W. Abney, Joseph M. Falkowski, Anna C. Ivashko