Patents by Inventor Joseph Norman Ulrey

Joseph Norman Ulrey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10393041
    Abstract: Methods and systems are provided for operating a split exhaust engine system that provides blowthrough air and exhaust gas recirculation to an intake passage via a second exhaust manifold and exhaust gas to an exhaust passage via a first exhaust manifold. In one example, in response to an intake throttle being at least partially closed, intake air may be routed from the intake passage to the second exhaust manifold via an exhaust gas recirculation (EGR) passage where the intake air may be heated via an EGR cooler. The heated intake air may then be routed to an intake manifold, downstream of the intake throttle, via a flow passage coupled between the second exhaust manifold and the intake manifold.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: August 27, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Joseph Norman Ulrey, Daniel Paul Madison, Brad Alan Boyer
  • Patent number: 10393039
    Abstract: Methods and systems are provided for operating a split exhaust engine system that provides blowthrough air and exhaust gas recirculation to an intake passage via a first exhaust manifold and exhaust gas to an exhaust passage via a second exhaust manifold. In one example, while both a first exhaust valve and second exhaust valve of a cylinder are open, intake air may be routed through a flow passage coupled between the intake passage and the first exhaust manifold, the first exhaust manifold coupled to the first exhaust valve. The intake air may be further routed through the first exhaust valve, into the cylinder, and out of the second exhaust valve to the second exhaust manifold coupled to the exhaust passage including a turbine.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: August 27, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Joseph Norman Ulrey, Corey Weaver
  • Patent number: 10393070
    Abstract: Methods and systems are provided for fueling an engine with liquefied petroleum gas (LPG). In one example, a method may comprise pumping (LPG) from a fuel tank to a direct injection rail and not to a port injection rail. The method may further comprise supplying LPG from the direct injection rail to a port injection rail without returning the LPG to the fuel tank.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: August 27, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Joseph Norman Ulrey, Ross Dykstra Pursifull
  • Publication number: 20190255913
    Abstract: A cabin heating system includes an exhaust heat exchanger having a cabin air conduit. That cabin air conduit includes a check valve, a pressure relief valve and a heat exchange section between the check valve and the pressure relief valve. The cabin heating system also includes a control module configured to maintain cabin air in the cabin air conduit at a first pressure P1 while exhaust gas in an exhaust bypass has a second pressure P2 where P1>P2.
    Type: Application
    Filed: February 19, 2018
    Publication date: August 22, 2019
    Inventors: Joseph Norman Ulrey, Gopichandra Surnilla, Ross Dykstra Pursifull, Thomas George Leone
  • Publication number: 20190255912
    Abstract: A cabin heating system includes a cabin air heat exchanger, an exhaust gas heat exchanger and a heat transfer loop. The heat transfer loop circulates a gaseous heat exchange fluid between the cabin air heat exchanger and the exhaust gas heat exchanger.
    Type: Application
    Filed: February 19, 2018
    Publication date: August 22, 2019
    Inventors: Joseph Norman Ulrey, Gopichandra Surnilla, Ross Dykstra Pursifull, Thomas George Leone
  • Patent number: 10378400
    Abstract: Methods and systems are provided for adjusting engine compression ratio (CR) and spark timing to attain particulate filter (PF) regeneration temperature. In one example, a method may include, in response to PF load reaching a threshold and PF temperature being lower than the PF regeneration temperature, lowering the CR and then selectively adjusting spark timing based on an estimated residual gas fraction (RGF) at the lower CR.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: August 13, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael James Uhrich, Joseph Norman Ulrey, Ross Dykstra Pursifull, Christopher Paul Glugla, Emil G. Serban
  • Patent number: 10375764
    Abstract: Method and apparatus are disclosed for determining and controlling a vehicle load current and temperature through the use of a common current sensor. An example vehicle includes a power source, an electrical sensor configured to detect a total current provided by the power source to a plurality of electrical loads, and a processor. The a processor is configured to determine a target load temperature based on the total current, and set a voltage duty cycle of the target load to maintain the target load temperature.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: August 6, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Joseph Norman Ulrey, Michael James Uhrich, Ross Dykstra Pursifull
  • Publication number: 20190234327
    Abstract: Methods and systems are provided for operating a split exhaust engine system that provides blowthrough air and exhaust gas recirculation to an intake passage via a first exhaust manifold and exhaust gas to an exhaust passage via a second exhaust manifold. In one example, during a cold start, a method may include adjusting a position of a first valve disposed in an exhaust gas recirculation (EGR) passage based on an engine operating condition, the EGR passage coupled between the first exhaust manifold coupled to a first set of exhaust valves and the intake passage, upstream of a compressor. As one example, the engine operating condition may include an engine temperature or a temperature of a catalyst disposed in the exhaust passage.
    Type: Application
    Filed: April 12, 2019
    Publication date: August 1, 2019
    Inventors: Joseph Norman Ulrey, Michael Howard Shelby, Kim Hwe Ku, Brad Alan Boyer
  • Patent number: 10364757
    Abstract: Methods and systems are provided to control exhaust energy delivered to a turbine of a turbine-generator coupled to a split exhaust engine system in order to limit turbine over-speed conditions and/or reduce generator vibration or reduce component over-heating conditions. In one example, a method may comprise in response to turbine speed greater than a threshold speed, selectively deactivating a first exhaust valve of one or more cylinders of a first and second cylinder group.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: July 30, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Thomas G. Leone, Joseph Norman Ulrey
  • Patent number: 10337425
    Abstract: Methods and systems are provided for operating a split exhaust engine system that provides blowthrough air and exhaust gas recirculation to an intake passage via a first exhaust manifold and exhaust gas to an exhaust passage via a second exhaust manifold. In one example, exhaust from a first set of exhaust valves coupled to the first exhaust manifold may be selectively routed to the intake passage via each of a first EGR passage coupled to the intake passage upstream of a compressor driven by a turbine and a second EGR passage coupled downstream of an outlet of the compressor. A decision of whether to route exhaust gas to the intake passage via the first EGR passage, second EGR passage, or both passages may be based on engine operating conditions.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: July 2, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Brad Alan Boyer, Joseph Norman Ulrey, Daniel Paul Madison, Corey Weaver
  • Patent number: 10329977
    Abstract: Methods and systems are provided for controlling particulate filter temperature during non-combustion conditions. In one example, a method for an engine includes responsive to a particulate filter temperature above a threshold temperature and while operating the engine with deceleration fuel shut-off (DFSO), fully closing a throttle valve configured to regulate flow of intake air to the engine, and responsive to intake manifold pressure dropping below a threshold pressure while the throttle valve is fully closed, adjusting a position of the throttle valve based on the particulate filter temperature.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: June 25, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Joseph Norman Ulrey, Emil G. Serban, Michiel J. Van Nieuwstadt
  • Patent number: 10328924
    Abstract: Methods and systems are provided for operating a split exhaust engine system that provides blowthrough air and exhaust gas recirculation to an intake passage via a first exhaust manifold and exhaust gas to an exhaust passage via a second exhaust manifold. In one example, the engine system may be installed in a hybrid vehicle, and, in response to a request to restart the engine while the vehicle is being propelled via motor torque only, the engine may be rotated unfueled via the motor torque at less than cranking speed while at least partially opening a valve disposed in a passage coupled between the first exhaust manifold and the intake passage. In another example, in response to the request to restart the engine, all exhaust valves of a second set of exhaust valves coupled to the second exhaust manifold may be deactivated.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: June 25, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Joseph Norman Ulrey, John D. Russell, Michael Howard Shelby
  • Patent number: 10330001
    Abstract: Methods and systems are provided for operating a split exhaust engine system that provides blowthrough air and exhaust gas recirculation to an intake passage via a first exhaust manifold and exhaust gas to an exhaust passage via a second exhaust manifold. In one example, in response to flowing the exhaust gas recirculation and blowthrough air from the first exhaust manifold to the intake passage via a first set of exhaust valves, a first set of swirl valves coupled upstream of a first set of intake valves may be adjusted to at least partially block intake air flow to the first set of intake valves. Each engine cylinder may include two intake valves including one of the first set of intake valves and two exhaust valves.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: June 25, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Thomas G. Leone, Joseph Norman Ulrey, Brad Alan Boyer
  • Patent number: 10316771
    Abstract: Methods and systems are provided for operating a split exhaust engine system that provides blowthrough air and exhaust gas recirculation to an intake passage via a first exhaust manifold and exhaust gas to an exhaust passage via a second exhaust manifold. In one example, during a cold start, a method may include adjusting a position of a first valve disposed in an exhaust gas recirculation (EGR) passage based on an engine operating condition, the EGR passage coupled between the first exhaust manifold coupled to a first set of exhaust valves and the intake passage, upstream of a compressor. As one example, the engine operating condition may include an engine temperature or a temperature of a catalyst disposed in the exhaust passage.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: June 11, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Joseph Norman Ulrey, Michael Howard Shelby, Kim Hwe Ku, Brad Alan Boyer
  • Publication number: 20190170050
    Abstract: Methods and systems are provided for controlling exhaust flow and recovering heat from exhaust gas under different operating conditions. In one example, motive flow of fresh air via an ejector coupled to an exhaust bypass assembly may be utilized to divert exhaust through a heat exchanger during cold-start conditions and heat extracted from the exhaust gas may be utilized for passenger cabin heating and other vehicle heating demands. The exhaust bypass assembly may also be used for EGR delivery wherein the exhaust heat exchanger may be used as an EGR cooler.
    Type: Application
    Filed: February 5, 2019
    Publication date: June 6, 2019
    Inventors: Michael James Uhrich, Joseph Norman Ulrey, Ross Dykstra Pursifull
  • Patent number: 10302195
    Abstract: A brake interlock feature prevents release of the park mechanism unless a driver is depressing the brake pedal. This is intended to prevent the vehicle from rolling following park release. An enhanced brake interlock feature also checks to ensure that adequate brake boost is available to prevent vehicle roll before releasing the park mechanism. The feature may directly measure brake boost or may measure a quantity indirectly related to the availability of brake boost such as engine speed.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: May 28, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Joseph Norman Ulrey, Ross Dykstra Pursifull
  • Publication number: 20190153964
    Abstract: Methods and systems are provided for providing exhaust gas recirculation to a naturally aspirated internal combustion engine. In one example, exhaust gas is recirculated to an engine intake via a dedicated scavenging manifold and a scavenging exhaust valve. The exhaust gas and fresh air that has not participated in combustion may be recirculated to engine cylinders even at high engine loads since the exhaust gas and fresh air is returned to the engine air intake at a pressure greater than atmospheric pressure.
    Type: Application
    Filed: January 22, 2019
    Publication date: May 23, 2019
    Inventor: Joseph Norman Ulrey
  • Publication number: 20190120146
    Abstract: Methods and systems are provided for operating a split exhaust engine system that provides blowthrough air and exhaust gas recirculation to an intake passage via a first exhaust manifold and exhaust gas to an exhaust passage via a second exhaust manifold. In one example, one or more valves of a set of first exhaust valves coupled to the second exhaust manifold may be deactivated in response to select engine operating conditions, while maintaining active all valves of a set of second exhaust valves coupled to the first exhaust manifold. The select engine operating conditions may include one or more of a deceleration fuel shut-off condition, a part throttle condition, and a cold start condition.
    Type: Application
    Filed: December 19, 2018
    Publication date: April 25, 2019
    Inventors: Joseph Norman Ulrey, Gregory Patrick McConville, Brad Alan Boyer
  • Publication number: 20190111939
    Abstract: A system for a vehicle includes an engine and an electric motor each configured to power the vehicle, and a controller configured to, responsive to both an engine-only drive range being less than a threshold and a drive mode being electric-only, operate an engine to charge a battery to deplete fuel for the engine and to reduce the engine-only drive range toward zero, and responsive to the engine-only drive range becoming zero, generate an alert.
    Type: Application
    Filed: October 13, 2017
    Publication date: April 18, 2019
    Inventors: Joseph Norman ULREY, Ross Dykstra PURSIFULL, William Charles RUONA
  • Publication number: 20190104567
    Abstract: Method and apparatus are disclosed for determining and controlling a vehicle load current and temperature through the use of a common current sensor. An example vehicle includes a power source, an electrical sensor configured to detect a total current provided by the power source to a plurality of electrical loads, and a processor. The a processor is configured to determine a target load temperature based on the total current, and set a voltage duty cycle of the target load to maintain the target load temperature.
    Type: Application
    Filed: October 4, 2017
    Publication date: April 4, 2019
    Inventors: Joseph Norman Ulrey, Michael James Uhrich, Ross Dykstra Pursifull