Patents by Inventor Joseph R. Armstrong

Joseph R. Armstrong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10166128
    Abstract: The invention relates to medical devices and methods of using them. The devices are prostheses which can be percutaneously deliverable with (or on) an endovascular catheter or via other surgical or other techniques and then expanded. The prostheses are configured to have a lattice resistant to dilation and creep, which is defined by a plurality of openings. The prosthesis may also optionally have a stent disposed proximal to the lattice. In exemplary embodiments, the fluoropolymer is expanded polytetrafluoroethylene. The composite materials exhibit high elongation while substantially retaining the strength properties of the fluoropolymer membrane. In at least one embodiment, the lattice is made of a composite material that includes a least one fluoropolymer membrane including serpentine fibrils and an elastomer. A lattice including a generally tubular member formed of a composite material including a least one fluoropolymer membrane containing serpentine fibrils and an elastomer is also provided.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: January 1, 2019
    Assignee: W. L. Gore & Associates. Inc.
    Inventors: Joseph R. Armstrong, Edward H. Cully, Jeffrey B. Duncan, Mark Y. Hansen, William D. Montgomery, Wendy J. Terry
  • Publication number: 20180153718
    Abstract: The invention relates to a medical device and a method of using it. The device is a stent which can be percutaneously deliverable with (or on) an endovascular catheter or via other surgical or other techniques and then expanded. The stent is configured to have a central portion defined by “open” cells and at least two end portions, defined by “closed” cells, spaced apart and directly connected to the distal and proximal ends of the central portion of the stent. The stent may also optionally have a covering or a lattice with openings.
    Type: Application
    Filed: November 22, 2017
    Publication date: June 7, 2018
    Inventors: Joseph R. Armstrong, Edward H. Cully, Michael W. Franklin, Mark Y. Hansen, Brandon A. Lurie, Craig R. McMurray, William D. Montgomery, Wendy J. Terry, Eric M. Tittelbaugh
  • Publication number: 20180116842
    Abstract: The present disclosure includes an endoprosthesis delivery system comprising an elongate member, such as a catheter, an endoprosthesis, a covering member disposed about the endoprosthesis, and at least one flexible element situated between the endoprosthesis and the covering member. The covering member can extend beyond an end of the endoprosthesis. In operation, as the covering member is removed, the flexible element can guide the covering member over the end of the endoprosthesis to prevent entanglement between the end of the endoprosthesis and the covering member.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 3, 2018
    Inventors: Joseph R. Armstrong, Edward H. Cully, Jeffrey B. Duncan, Larry J. Kovach, Douglas F. Pajot, Brandon C. Short, Mark J. Ulm, Michael J. Vonesh
  • Publication number: 20180049898
    Abstract: An open stent (a stent having open space through its thickness at locations between the ends of the stent), incorporating flexible, preferably polymeric, connecting elements into the stent wherein these elements connect adjacent, spaced-apart stent elements. Preferably the spaced-apart adjacent stent elements are the result of forming the stent from a helically wound serpentine wire having space provided between adjacent windings. Other stent forms such as multiple, individual spaced-apart ring-shaped or interconnected stent elements may also be used. The connecting elements are preferably longitudinally oriented.
    Type: Application
    Filed: March 9, 2017
    Publication date: February 22, 2018
    Inventors: Joseph R. Armstrong, Edward H. Cully, Mark Y. Hansen, Brian L. Johnson, Bret J. Kilgrow, Larry J. Kovach, James D. Silverman
  • Patent number: 9855160
    Abstract: The present disclosure includes an endoprosthesis delivery system comprising an elongate member, such as a catheter, an endoprosthesis, a covering member disposed about the endoprosthesis, and at least one flexible element situated between the endoprosthesis and the covering member. The covering member can extend beyond an end of the endoprosthesis. In operation, as the covering member is removed, the flexible element can guide the covering member over the end of the endoprosthesis to prevent entanglement between the end of the endoprosthesis and the covering member.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: January 2, 2018
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Joseph R. Armstrong, Edward H. Cully, Jeffrey B. Duncan, Larry J. Kovach, Douglas F. Pajot, Brandon C. Short, Mark J. Ulm, Michael J. Vonesh
  • Patent number: 9839540
    Abstract: The invention relates to a medical device and a method of using it. The device is a stent which can be percutaneously deliverable with (or on) an endovascular catheter or via other surgical or other techniques and then expanded. The stent is configured to have a central portion defined by “open” cells and at least two end portions, defined by “closed” cells, spaced apart and directly connected to the distal and proximal ends of the central portion of the stent. The stent may also optionally have a covering or a lattice with openings.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: December 12, 2017
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Joseph R. Armstrong, Edward H. Cully, Michael W. Franklin, Mark Y. Hansen, Brandon A. Lurie, Craig R. McMurray, William D. Montgomery, Wendy J. Terry, Eric M. Tittelbaugh
  • Patent number: 9795496
    Abstract: The invention relates to a medical device and a method of using it. The device is a stent which can be percutaneously deliverable with (or on) an endovascular catheter or via other surgical or other techniques and then expanded. The stent is configured to have a central portion defined by “open” cells and at least two end portions, defined by “closed” cells, spaced apart and directly connected to the distal and proximal ends of the central portion of the stent. The stent may also optionally have a covering or a lattice with openings.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: October 24, 2017
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Joseph R. Armstrong, Edward H. Cully, Michael W. Franklin, Mark Y. Hansen, Brandon A. Lurie, Craig R. McMurray, William D. Montgomery, Wendy J. Terry, Eric M. Tittelbaugh
  • Patent number: 9737422
    Abstract: The invention relates to a medical device and a method of using it. The device is a stent which can be percutaneously deliverable with (or on) an endovascular catheter or via other surgical or other techniques and then expanded. The stent is configured to have a central portion defined by “open” cells and at least two end portions, defined by “closed” cells, spaced apart and directly connected to the distal and proximal ends of the central portion of the stent. The stent may also optionally have a covering or a lattice with openings.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: August 22, 2017
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Joseph R. Armstrong, Edward H. Cully, Michael W. Franklin, Mark Y. Hansen, Brandon A. Lurie, Craig R. McMurray, William D. Montgomery, Wendy J. Terry, Eric M. Tittelbaugh
  • Publication number: 20170216062
    Abstract: The invention relates to medical devices and methods of using them. The devices are prostheses which can be percutaneously deliverable with (or on) an endovascular catheter or via other surgical or other techniques and then expanded. The prostheses are configured to have a lattice resistant to dilation and creep, which is defined by a plurality of openings. The prosthesis may also optionally have a stent disposed proximal to the lattice. In exemplary embodiments, the fluoropolymer is expanded polytetrafluoroethylene. The composite materials exhibit high elongation while substantially retaining the strength properties of the fluoropolymer membrane. In at least one embodiment, the lattice is made of a composite material that includes a least one fluoropolymer membrane including serpentine fibrils and an elastomer. A lattice including a generally tubular member formed of a composite material including a least one fluoropolymer membrane containing serpentine fibrils and an elastomer is also provided.
    Type: Application
    Filed: April 19, 2017
    Publication date: August 3, 2017
    Inventors: Joseph R. Armstrong, Edward H. Cully, Jeffrey B. Duncan, Mark Y. Hansen, William D. Montgomery, Wendy J. Terry
  • Patent number: 9622888
    Abstract: An open stent (a stent having open space through its thickness at locations between the ends of the stent), incorporating flexible, preferably polymeric, connecting elements into the stent wherein these elements connect adjacent, spaced-apart stent elements. Preferably the spaced-apart adjacent stent elements are the result of forming the stent from a helically wound serpentine wire having space provided between adjacent windings. Other stent forms such as multiple, individual spaced-apart ring-shaped or interconnected stent elements may also be used. The connecting elements are preferably longitudinally oriented.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: April 18, 2017
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Joseph R. Armstrong, Edward H. Cully, Mark Y. Hansen, Brian L. Johnson, Bret J. Kilgrow, Larry J. Kovach, James D. Silverman
  • Publication number: 20170065400
    Abstract: The invention relates to medical devices and methods of using them. The devices are prostheses which can be percutaneously deliverable with (or on) an endovascular catheter or via other surgical or other techniques and then expanded. The prostheses are configured to have a lattice resistant to dilation and creep, which is defined by a plurality of openings. The prosthesis may also optionally have a stent disposed proximal to the lattice. In exemplary embodiments, the fluoropolymer is expanded polytetrafluoroethylene. The composite materials exhibit high elongation while substantially retaining the strength properties of the fluoropolymer membrane. In at least one embodiment, the lattice is made of a composite material that includes a least one fluoropolymer membrane including serpentine fibrils and an elastomer. A lattice including a generally tubular member formed of a composite material including a least one fluoropolymer membrane containing serpentine fibrils and an elastomer is also provided.
    Type: Application
    Filed: November 16, 2016
    Publication date: March 9, 2017
    Inventors: Joseph R. Armstrong, Edward H. Cully, Jeffrey B. Duncan, Mark Y. Hansen, William D. Montgomery, Wendy J. Terry
  • Publication number: 20170042674
    Abstract: Described embodiments are directed toward prosthetic valves having leaflets that move asymmetrically in that a leaflet second side region of the leaflet initially moves toward the open position before a leaflet first side region and the leaflet first side region initially moves toward the closed position before the leaflet second side region. In the fully open position, the leaflet first side region opens less than the leaflet second side region. Asymmetric opening and final open position, in synchrony with the other leaflets having the same motion and final open position creates spiral flow exiting the open valve that increases blood flow on the downstream side of the leaflet and thus reduces stagnation of the blood that might lead to thrombus formation. Controlled asymmetric movement of the leaflet reduces closing volume by initiating closure on the leaflet first side region and finishing closures on the leaflet second side region.
    Type: Application
    Filed: October 25, 2016
    Publication date: February 16, 2017
    Inventor: Joseph R. Armstrong
  • Patent number: 9504565
    Abstract: Described embodiments are directed toward prosthetic valves having leaflets that move asymmetrically in that a leaflet second side region of the leaflet initially moves toward the open position before a leaflet first side region and the leaflet first side region initially moves toward the closed position before the leaflet second side region. In the fully open position, the leaflet first side region opens less than the leaflet second side region. Asymmetric opening and final open position, in synchrony with the other leaflets having the same motion and final open position creates spiral flow exiting the open valve that increases blood flow on the downstream side of the leaflet and thus reduces stagnation of the blood that might lead to thrombus formation. Controlled asymmetric movement of the leaflet reduces closing volume by initiating closure on the leaflet first side region and finishing closures on the leaflet second side region.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: November 29, 2016
    Assignee: W. L. Gore & Associates, Inc.
    Inventor: Joseph R. Armstrong
  • Publication number: 20160100939
    Abstract: Valved conduits are provided that include a leaflet construct coupled between two portions of a conduit. Each leaflet has a free edge and a leaflet attachment edge. The leaflet attachment edge is disposed between a first conduit distal end and a second conduit proximal end that are coaxial therebetween defining a junction.
    Type: Application
    Filed: October 12, 2015
    Publication date: April 14, 2016
    Inventors: Joseph R. Armstrong, Nathan L. Bennett, Kyle W. Colavito, Edwin W. Field
  • Patent number: 9119937
    Abstract: A catheter provided with a guidewire catheter lumen having a thin covering that is easily punctured by a guidewire at virtually any desired point along the catheter length. The thin covering may be integral with the catheter shaft, or may be a separate component that covers only the portion of the catheter shaft immediately adjacent the outer portion of the guidewire lumen, or may be a thin tubular construct that surrounds the entire catheter shaft. The covering is preferably relatively translucent, allowing for good visualization of the location of the end of the guidewire to enable puncturing of the covering at the desired location along the length of the catheter shaft. The covering is also preferably tear resistant at puncture sites. The catheter shaft is preferably made of a material having a color that provides good visibility against an operating field, and more preferably is phosphorescent either entirely or in part.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: September 1, 2015
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Joseph R. Armstrong, Edward H. Cully, Keith M. Flury, Michael J. Vonesh
  • Patent number: 9056001
    Abstract: Large diameter self-expanding endoprosthetic devices, such as stents and stent grafts for delivery to large diameter vessels, such as the aorta, are disclosed having very small compacted delivery dimensions. Devices with deployed dimensions of 26 to 40 mm or more are disclosed that are compacted to extremely small dimensions of 5 mm or less, enabling percutaneous delivery of said devices without the need for surgical intervention. Compaction efficiencies are achieved by combining unique material combinations with new forms of restraining devices, compaction techniques, and delivery techniques. These inventive devices permit consistent percutaneous delivery of large vessel treatment devices. Additionally, small endoprosthetic devices are disclosed that can be compacted to extremely small dimensions for delivery through catheter tubes of less than 1 mm diameter.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: June 16, 2015
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Joseph R. Armstrong, Edward H. Cully, Mark J. Ulm, Michael J. Vonesh
  • Publication number: 20150157456
    Abstract: Described embodiments are directed toward prosthetic valves having leaflets that move asymmetrically in that a leaflet second side region of the leaflet initially moves toward the open position before a leaflet first side region and the leaflet first side region initially moves toward the closed position before the leaflet second side region. In the fully open position, the leaflet first side region opens less than the leaflet second side region. Asymmetric opening and final open position, in synchrony with the other leaflets having the same motion and final open position creates spiral flow exiting the open valve that increases blood flow on the downstream side of the leaflet and thus reduces stagnation of the blood that might lead to thrombus formation. Controlled asymmetric movement of the leaflet reduces closing volume by initiating closure on the leaflet first side region and finishing closures on the leaflet second side region.
    Type: Application
    Filed: December 4, 2014
    Publication date: June 11, 2015
    Inventor: Joseph R. Armstrong
  • Patent number: 9005269
    Abstract: Bioabsorbable self-expanding medical devices formed of an integral framework with a multiplicity of fenestrations are provided. The framework is continuous, non-filamentous, non-braided, and non-interlaced. The devices includes a non-blended hydrolysable co-polymeric material comprising an amorphous component with a glass transition temperature that is below ambient body temperature and a crystallizable component that possesses a crystalline melting point in excess of ambient body temperature. The devices radially expand from a compressed first diameter to an uncompressed second diameter equal to or greater than 1.5 times the first diameter within two minutes in an aqueous medium at 37° C. following release of a compressive force placed on the devices. Additionally, the medical device does not change axial length significantly as the radial dimensions of the devices are changed.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: April 14, 2015
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Joseph R. Armstrong, Paul C. Begovac, Robert L. Cleek, Edward H. Cully, Charles Flynn, Byron K. Hayes, Ryan V. Peterson, Michael J. Vonesh, Charles F. White
  • Publication number: 20140277363
    Abstract: The present disclosure includes an endoprosthesis delivery system comprising an elongate member, such as a catheter, an endoprosthesis, a covering member disposed about the endoprosthesis, and at least one flexible element situated between the endoprosthesis and the covering member. The covering member can extend beyond an end of the endoprosthesis. In operation, as the covering member is removed, the flexible element can guide the covering member over the end of the endoprosthesis to prevent entanglement between the end of the endoprosthesis and the covering member.
    Type: Application
    Filed: March 5, 2014
    Publication date: September 18, 2014
    Applicant: W. L. Gore & Associates, Inc.
    Inventors: Joseph R. Armstrong, Edward H. Cully, Jeffrey B. Duncan, Larry J. Kovach, Douglas F. Pajot, Brandon C. Short, Mark J. Ulm, Michael J. Vonesh
  • Publication number: 20120303112
    Abstract: The invention relates to a medical device and a method of using it. The device is a stent which can be percutaneously deliverable with (or on) an endovascular catheter or via other surgical or other techniques and then expanded. The stent is configured to have a central portion defined by “open” cells and at least two end portions, defined by “closed” cells, spaced apart and directly connected to the distal and proximal ends of the central portion of the stent. The stent may also optionally have a covering or a lattice with openings.
    Type: Application
    Filed: November 16, 2011
    Publication date: November 29, 2012
    Inventors: Joseph R. Armstrong, Edward H. Cully, Michael W. Franklin, Mark Y. Hansen, Brandon A. Lurie, Craig r. McMurray, William D. Montgomery, Wendy J. Terry, Eric M. Tittelbaugh