Patents by Inventor Joseph W. Goodman

Joseph W. Goodman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9229307
    Abstract: An apparatus comprising a visible light source(s), multimode optical fiber(s), light coupler(s), an optional spatial light modulator(s), and an optional projection lens(es). The light source has a 1/e half-width emission bandwidth. The light coupler couples the light source to the multimode optical fiber(s) such that objective speckle contrast is reduced. The multimode optical fiber(s) may pass light from the coupler to an optional spatial light modulator. The spatial light modulator may modulate the light to form an image. The projection lens may transfer light onto an image plane or to illuminate objects. The objective speckle contrast at the end of the multimode fiber in combination with the projection lens diameter (if employed) and wavelength diversity may result in viewed images at the viewer's eye, or other detector, exhibiting speckle contrast that may be 1% or less.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: January 5, 2016
    Assignee: JGM Associated, Inc.
    Inventors: Jeffrey G Manni, Joseph W Goodman
  • Publication number: 20150168738
    Abstract: An apparatus comprising a visible light source(s), multimode optical fiber(s), light coupler(s), an optional spatial light modulator(s), and an optional projection lens(es). The light source has a 1/e half-width emission bandwidth. The light coupler couples the light source to the multimode optical fiber(s) such that objective speckle contrast is reduced. The multimode optical fiber(s) may pass light from the coupler to an optional spatial light modulator. The spatial light modulator may modulate the light to form an image. The projection lens may transfer light onto an image plane or to illuminate objects. The objective speckle contrast at the end of the multimode fiber in combination with the projection lens diameter (if employed) and wavelength diversity may result in viewed images at the viewer's eye, or other detector, exhibiting speckle contrast that may be 1% or less.
    Type: Application
    Filed: February 24, 2015
    Publication date: June 18, 2015
    Applicant: JGM ASSOCIATES, INC.
    Inventors: Jeffrey G. Manni, Joseph W. Goodman
  • Patent number: 9046697
    Abstract: An apparatus comprising a laser and/or LED light source(s), multimode optical fiber(s), light coupler(s), an optional spatial light modulator(s), and an optional projection lens(es). The light source has a 1/e half-width emission bandwidth. The light coupler couples the light source to the multimode optical fiber(s) such that objective speckle contrast is reduced. The multimode optical fiber(s) may pass light from the coupler to an optional spatial light modulator. The spatial light modulator may modulate the light to form an image. The projection lens may transfer light onto an image plane or to illuminate objects. The objective speckle contrast at the end of the multimode fiber in combination with the projection lens diameter (if employed) and wavelength diversity may result in viewed images at the viewer's eye, or other detector, exhibiting speckle contrast that may be 1% or less.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: June 2, 2015
    Assignee: JGM ASSOCIATES, INC.
    Inventors: Jeffrey G Manni, Joseph W Goodman
  • Patent number: 8841591
    Abstract: Systems, methods and devices are implemented for optical imaging. In one embodiment of the present disclosure, an optical imaging apparatus utilizes a laser-based coherent light source, and an optical device to pass grated light along an illumination direction from the laser-based coherent light source toward an object. Additionally, an illumination modulator is provided for changing angles at which the light, moving toward the object plane, reaches the object plane, and the light reaches the object plane at different angles. Further, the apparatus can include circuitry to process image-based data in response to and based on the light reaching the object plane at different angles for a user-viewable image of an object in proximity of the object plane.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: September 23, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jeffrey P. Wilde, Yonina C. Eldar, Joseph W. Goodman
  • Publication number: 20120250032
    Abstract: Systems, methods and devices are implemented for optical imaging. In one embodiment of the present disclosure, an optical imaging apparatus utilizes a laser-based coherent light source, and an optical device to pass grated light along an illumination direction from the laser-based coherent light source toward an object. Additionally, an illumination modulator is provided for changing angles at which the light, moving toward the object plane, reaches the object plane, and the light reaches the object plane at different angles. Further, the apparatus can include circuitry to process image-based data in response to and based on the light reaching the object plane at different angles for a user-viewable image of an object in proximity of the object plane.
    Type: Application
    Filed: April 4, 2012
    Publication date: October 4, 2012
    Inventors: Jeffrey P. Wilde, Yonina C. Eldar, Joseph W. Goodman
  • Patent number: 6987907
    Abstract: The present invention is a method and apparatus for a rotating, tunable, holographic drop filter connected to a fiber optic source. The filter uses a quasi phase-conjugate optical system for a drop-channel fiber coupling and WDM channels which are introduced to the system. The light from these channels is collimated and passed through a volume phase holographic material so that only one WDM channel is diffracted and the rest pass through the holographic material unaffected. A quasi phase-conjugate diffracted beam is generated by the optical system to reflect the diffracted channel back towards the holographic material. The reflected light is Bragg matched to the holographic material so that it is re-diffracted along a path identical to the original incident light beam. A free-space circulator may be used to direct the diffracted beam to a fiber optic collimator, which is different from the fiber optic collimator of the incident light beam.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: January 17, 2006
    Assignee: California Institute of Technology
    Inventors: Demetri Psaltis, Christophe Moser, Greg Steckman, Karsten Buse, Ingo Nee, Joerg Hukriede, Joseph W. Goodman
  • Publication number: 20020097458
    Abstract: The present invention is a method and apparatus for a rotating, tunable, holographic drop filter connected to a fiber optic source. The filter uses a quasi phase-conjugate optical system for a drop-channel fiber coupling and WDM channels which are introduced to the system. The light from these channels is collimated and passed through a volume phase holographic material so that only one WDM channel is diffracted and the rest pass through the holographic material unaffected. A quasi phase-conjugate diffracted beam is generated by the optical system to reflect the diffracted channel back towards the holographic material. The reflected light is Bragg matched to the holographic material so that it is re-diffracted along a path identical to the original incident light beam. A free-space circulator may be used to direct the diffracted beam to a fiber optic collimator, which is different from the fiber optic collimator of the incident light beam.
    Type: Application
    Filed: December 4, 2001
    Publication date: July 25, 2002
    Inventors: Demetri Psaltis, Christophe Moser, Greg Steckman, Karsten Buse, Ingo Nee, Joerg Hukriede, Joseph W. Goodman
  • Patent number: 5610734
    Abstract: An optical system is disclosed which focuses a polychromatic source to an extended focal pencil. The implementation makes use of two holographic optical elements (HOEs) fabricated and aligned to form a deliberate longitudinal color dispersion, but to alleviate lateral chromatic effects. Consequently, the HOE doublet focuses different wavelengths of the source to different locations along the optical axis. The strong intensity of the focused wavelengths dominate at each location, so that the overall beam has a near-diffraction-limited 1/e.sup.2 spot size and suffers only relatively weak background illumination. An alternative optical system using bulk lenses and several possible applications for the device are also described.
    Type: Grant
    Filed: February 9, 1995
    Date of Patent: March 11, 1997
    Assignee: Board of Trustees Leland Stanford, Jr. University
    Inventors: Abraham Aharoni, Joseph W. Goodman, Yaakov Amitai
  • Patent number: 5541756
    Abstract: A network and method for routing optical signals through wavelength-coding of routing tags belonging to the optical signals. The routing tag preferably consists of one or more header pulses S.sub.i which are chosen from among header wavelengths .lambda..sub.hi. Preferably, the header wavelengths .lambda..sub.hi are different from wavelengths used by the data. The optical signal also has reset tag containing preferably one reset pulse R preferably having a unique reset wavelength .lambda..sub.r. The optical data is contained between the routing tag and the reset tag. The network has a splitter for dividing the optical signal into two or more split optical signals, which are copies of the original optical signal. A wavelength differentiating element is positioned in the path of one of the split optical signals to differentiate and preferably spatially resolve the header wavelengths of the header pulses.
    Type: Grant
    Filed: November 17, 1994
    Date of Patent: July 30, 1996
    Assignee: Board of Trustees of the Leland Stanford Junior Universty
    Inventors: Constance J. Chang-Hasnain, Kam-Yin Lau, Joseph W. Goodman, Anujan Varma
  • Patent number: 5422746
    Abstract: The holographic element of the present invention includes a holographic grating pattern that is impressed in the media of the element utilizing beams of electromagnetic energy of wavelength .lambda..sub.o. The holographic grating pattern is capable of manipulating a beam of electromagnetic energy having a wavelength .lambda..sub.c at which the media is not necessarily suitable for recording. The method for manufacturing the holographic element utilizes an object beam and a reference beam having aspherical wavefronts of wavelength .lambda..sub.o to create the grating pattern in the media. In the preferred embodiment, the aspherical object beam and reference beam are created utilizing parent holographic devices recorded with spherical beams. An alternative embodiment of the present invention is a doublet holographic device which incorporates two holographic elements that are formed in accordance with the present invention to manipulate a beam of electromagnetic energy of wavelength .lambda..sub.
    Type: Grant
    Filed: September 11, 1992
    Date of Patent: June 6, 1995
    Assignee: Board of Trustees of the Leland Stanford Jr. University
    Inventors: Abraham Aharoni, Joseph W. Goodman, Yaakov Amitai
  • Patent number: 4674824
    Abstract: An optical system for selectively enhancing and/or suppressing the spectral intensity of components in an object beam, is disclosed. In one exemplary application, the optical system includes means for performing a forward transform operation on an input beam, a non-linear optical medium such as, for example, Bi.sub.12 SiO.sub.20 or Bi.sub.12 GeO.sub.20 and means for performing an inverse transform operation. In operation, the forward transform is performed on an input beam that contains a complex function characteristic of an object or subject, the resulting transform of the object beam is applied to the non-linear optical medium to form a hologram, then the hologram is read-out and the inverse transform operation is performed to provide an output optical beam that contains, for example, selectively enhanced intensity components and/or selectively suppressed intensity components.
    Type: Grant
    Filed: June 14, 1985
    Date of Patent: June 23, 1987
    Assignee: Stanford University
    Inventors: Joseph W. Goodman, Lambertus Hesselink, Ellen Ochoa
  • Patent number: 4588255
    Abstract: An array (48, 49, 50, 51) of fiber optic couplers coupling an input (45) and an output (46) waveguide. The output waveguide (46) is routed among the couplers of the array such that either backward or forward coupling exists. With backward coupling, energy coupled into the output waveguide (46) in a coupler of the array is guided back to the preceding coupler for coupling back into the input waveguide (45).The backward coupling allows recirculations to occur between couplers to create poles and zeroes in the transfer function of the array which transfer function can be programmed or tailored somewhat to have specific characteristics. Further, the backward coupling allows the array to be used for matrix-vector multiplication.
    Type: Grant
    Filed: June 13, 1983
    Date of Patent: May 13, 1986
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Moshe Tur, Joseph W. Goodman, Herbert J. Shaw, Behzad Moslehi, John E. Bowers