Patents by Inventor Joshua G. Nickel

Joshua G. Nickel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9653783
    Abstract: Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. An inverted-F antenna may have first and second short circuit legs and a feed leg. The first and second short circuit legs and the feed leg may be connected to a folded antenna resonating element arm. The antenna resonating element arm and the first short circuit leg may be formed from portions of a conductive electronic device bezel. The folded antenna resonating element arm may have a bend. The bezel may have a gap that is located at the bend. Part of the folded resonating element arm may be formed from a conductive trace on a dielectric member. A spring may be used in connecting the conductive trace to the electronic device bezel portion of the antenna resonating element arm.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: May 16, 2017
    Assignee: Apple Inc.
    Inventors: Joshua G. Nickel, Juan Zavala, Yijun Zhou, Mattia Pascolini, Robert W. Schlub, Ruben Caballero
  • Patent number: 9404965
    Abstract: A test system is provided for performing radio-frequency tests on an electronic device under test (DUT) having multiple antennas. The test system may include a test unit for generating radio-frequency test signals, a test enclosure, and a test antenna fixture. The test fixture may include tunable antenna circuitry, antenna tuning elements, a test sensor, a microcontroller, a battery, and a solar cell that charges the battery, each of which is mounted on a test fixture within the test enclosure. The test sensor may be used to detect stimuli issued by the DUT. In response to detecting the stimuli, the microcontroller may send control signals to the antenna tuning elements to configure the antenna circuitry in different modes. Each of the different modes may be optimized to test a selected one of the multiple antennas in the DUT when operating using different radio access technologies and at different frequencies.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: August 2, 2016
    Assignee: Apple Inc.
    Inventors: Joshua G. Nickel, Erica J. Tong, Vishwanath Venkataraman
  • Patent number: 9404842
    Abstract: Damage to conductive material that serves as bridging connections between conductive structures within an electronic device may result in deficiencies in radio-frequency (RF) and other wireless communications. A test system for testing device structures under test is provided. Device structures under test may include substrates and a conductive material between the substrates. The test system may include a test fixture for increasing tensile or compressive stress on the device structures under test to evaluate the resilience of the conductive material. The test system may also include a test unit for transmitting RF test signals and receiving test data from the device structures under test. The received test data may include scattered parameter measurements from the device structures under test that may be used to determine if the device structures under test meet desired RF performance criteria.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: August 2, 2016
    Assignee: Apple Inc.
    Inventors: Joshua G. Nickel, Chun-Lung Chen, Tseng-Mau Yang, Nicholas G. Merz, Robert W. Schlub, Boon W. Shiu, Erica J. Tong
  • Patent number: 9372228
    Abstract: Electronic device structures such as structures containing antennas, connectors, welds, electronic device components, conductive housing structures, and other structures can be tested for faults using a non-contact test system. The test system may include a vector network analyzer or other test unit that generates radio-frequency tests signals in a range of frequencies. The radio-frequency test signals may be transmitted to electronic device structures under test using an antenna probe that has one or more test antennas. The antenna probe may receive corresponding radio-frequency signals. The transmitted and received radio-frequency test signals may be analyzed to determine whether the electronic device structures under test contain a fault.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: June 21, 2016
    Assignee: Apple Inc.
    Inventors: Joshua G. Nickel, Jonathan P. G. Gavin
  • Patent number: 9350069
    Abstract: Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antennas. An antenna may be formed from an antenna resonating element arm and an antenna ground. The antenna resonating element arm may have a shorter portion that resonates at higher communications band frequencies and a longer portion that resonates at lower communications band frequencies. A short circuit branch may be coupled between the shorter portion of the antenna resonating element arm and the antenna ground. A series-connected inductor and switch may be coupled between the longer portion of the antenna resonating element arm and the antenna ground. An antenna feed branch may be coupled between the antenna resonating element arm and the antenna ground at a location that is between the short circuit branch and the series-connected inductor and switch.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: May 24, 2016
    Assignee: Apple Inc.
    Inventors: Mattia Pascolini, Robert W. Schlub, Nanbo Jin, Matthew A. Mow, Hongfei Hu, Joshua G. Nickel
  • Patent number: 9319908
    Abstract: A test station may include a test host, a test unit, and a test enclosure. A device under test (DUT) having at least first and second antennas may be placed in the test enclosure during production testing. Radio-frequency test signals may be conveyed from the test unit to the DUT using a test antenna in the test enclosure. In a first time period during which the performance of the first antenna is being tested, the DUT may be oriented in a first position such that path loss between the first antenna and the test antenna is minimized. In a second time period during which the performance of the second antenna is being tested, the DUT may be oriented in a second position such that path loss between the second antenna and the test antenna is minimized. The DUT is marked as a passing DUT if gathered test data is satisfactory.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: April 19, 2016
    Assignee: Apple Inc.
    Inventors: Joshua G. Nickel, Mattia Pascolini, Jr-Yi Shen
  • Patent number: 9310422
    Abstract: A test system for testing a device under test (DUT) is provided. The test system may include a DUT receiving structure configured to receive the DUT during testing and a DUT retention structure that is configured to press the DUT against the DUT receiving structure so that DUT cannot inadvertently shift around during testing. The DUT retention structure may include a pressure sensor operable to detect an amount of pressure that is applied to the DUT. The DUT retention structure may be raised and lowered vertically using a manually-controlled or a computer-controlled positioner. The positioner may be adjusted using a coarse tuning knob and a fine tuning knob. The positioner may be calibrated such that the DUT retention structure applies a sufficient amount of pressure on the DUT during production testing.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: April 12, 2016
    Assignee: Apple Inc.
    Inventors: Jayesh Nath, Liang Han, Matthew A. Mow, Hagan O'Connor, Joshua G. Nickel, Peter Bevelacqua, Mattia Pascolini, Robert W. Schlub, Ruben Caballero
  • Patent number: 9285419
    Abstract: Electronic devices may be tested using a test station with a test fixture. The test fixture may include a first holding structure in which a device under test may be placed and a second holding structure for supporting test probes. The second holding structure may be mated with a test probe alignment structure during test station setup operations. The test probe alignment structure may include registration features configured to set the relative position of the first and second holding structures to a known configuration and may include test probe alignment features that can be used to correctly position the placement of the test probes. If at least one of the test probes is not sufficiently aligned to its corresponding alignment feature, the test probe alignment structures will not be able to engage properly with the second holding structure, and the position of the problematic test probe may be adjusted accordingly.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: March 15, 2016
    Assignee: Apple Inc.
    Inventors: Joshua G. Nickel, Jr-Yi Shen
  • Patent number: 9287627
    Abstract: Custom antenna structures may be used to compensate for manufacturing variations in electronic device antennas. An antenna may have an antenna feed and conductive structures such as portions of a peripheral conductive electronic device housing member. The custom antenna structures compensate for manufacturing variations that could potentially lead to undesired variations in antenna performance. The custom antenna structures may make customized alterations to antenna feed structures or conductive paths within an antenna. An antenna may be formed from a conductive housing member that surrounds an electronic device. The custom antenna structures may be formed from a printed circuit board with a customizable trace. The customizable trace may have a contact pad portion on the printed circuit board. The customizable trace may be customized to connect the pad to a desired one of a plurality of contacts associated with the conductive housing member to form a customized antenna feed terminal.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: March 15, 2016
    Assignee: Apple Inc.
    Inventors: Daniel W. Jarvis, Mattia Pascolini, Joshua G. Nickel
  • Patent number: 9274142
    Abstract: Conductive electronic device structures such as a conductive housing member that forms part of an antenna may be tested during manufacturing. A test system may be provided that has a capacitive coupling probe. The probe may have electrodes. The electrodes may be formed from patterned metal structures in a dielectric substrate. A test unit may provide radio-frequency test signals in a range of frequencies. The radio-frequency test signals may be applied to the conductive housing member or other conductive structures under test using the electrodes. Complex impedance data, forward transfer coefficient data, or other data may be used to determine whether the structures are faulty. A fixture may be used to hold the capacitive coupling probe in place against the conductive electronic device structures during testing.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: March 1, 2016
    Assignee: Apple Inc.
    Inventors: Joshua G. Nickel, Jr-Yi Shen
  • Patent number: 9270012
    Abstract: An electronic device may have tunable antenna structures. A tunable antenna may have an antenna resonating element and an antenna ground. An adjustable electronic component such as an adjustable capacitor, adjustable inductor, or adjustable phase-shift element may be used in tuning the antenna. An impedance matching circuit may be coupled between the tunable antenna and a radio-frequency transceiver. The adjustable electronic component may be coupled to the antenna resonating element or other structures in the antenna or may form part of the impedance matching circuit, a transmission line, a parasitic antenna element, or other antenna structures. During manufacturing, manufacturing variations may cause the performance of the tunable antenna to deviate from desired specifications. Calibration operations may be performed to identify compensating adjustments to be made with the adjustable electronic component.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: February 23, 2016
    Assignee: Apple Inc.
    Inventors: Joshua G. Nickel, Mattia Pascolini
  • Patent number: 9214718
    Abstract: A wireless electronic device may contain at least one antenna tuning element for use in tuning the operating frequency range of the device. The antenna tuning element may include radio-frequency switches, continuously/semi-continuously adjustable components such as tunable resistors, inductors, and capacitors, and other load circuits that provide desired impedance characteristics. A test station may be used to measure the radio-frequency characteristics associated with the tuning element. The test station may provide adjustable temperature, power, and impedance control to help emulate a true application environment for the tuning element without having to place the tuning element within an actual device during testing. The test system may include at least one signal generator and a tester for measuring harmonic distortion values and may include at least two signal generators and a tester for measuring intermodulation distortion values.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: December 15, 2015
    Assignee: Apple Inc.
    Inventors: Matthew A. Mow, Thomas E. Biedka, Liang Han, Rocco V. Dragone, Jr., Hongfei Hu, Dean F. Darnell, Joshua G. Nickel, Robert W. Schlub, Mattia Pascolini, Ruben Caballero
  • Patent number: 9213053
    Abstract: A portable test chamber with an open top may serve as a field testing apparatus for wireless testing of electronic devices. A wireless device under test may be mounted within a cavity in the test chamber. The cavity may be surrounded by a dielectric lining of anechoic material. A layer of electromagnetic shielding such as metal foil may cover the outer surfaces of the dielectric lining. The chamber may have a box shape with a rectangular opening at its top. Satellite navigation system signals or other wireless signals may be received through the opening at the top of the test chamber during testing. The electromagnetic shielding may reduce the effects of multipath interference during field tests.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: December 15, 2015
    Assignee: Apple Inc.
    Inventors: Joshua G. Nickel, Robert W. Mayor, Glenn D. MacGougan, William J. Noellert, Joseph Hakim
  • Publication number: 20150357703
    Abstract: Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. An inverted-F antenna may have first and second short circuit legs and a feed leg. The first and second short circuit legs and the feed leg may be connected to a folded antenna resonating element arm. The antenna resonating element arm and the first short circuit leg may be formed from portions of a conductive electronic device bezel. The folded antenna resonating element arm may have a bend. The bezel may have a gap that is located at the bend. Part of the folded resonating element arm may be formed from a conductive trace on a dielectric member. A spring may be used in connecting the conductive trace to the electronic device bezel portion of the antenna resonating element arm.
    Type: Application
    Filed: August 19, 2015
    Publication date: December 10, 2015
    Inventors: Joshua G. Nickel, Juan Zavala, Yijun Zhou, Mattia Pascolini, Robert W. Schlub, Ruben Caballero
  • Patent number: 9164159
    Abstract: A manufacturing system for assembling wireless electronic devices is provided. The manufacturing system may include test stations for testing the radio-frequency performance of components that are to be assembled within the electronic devices. A reference test station may be calibrated using calibration coupons having known radio-frequency characteristics. The calibration coupons may include transmission line structures. The reference test station may measure verification standards to establish baseline measurement data. The verification standards may include circuitry having electrical components with given impedance values. Many verification coupons may be measured to enable testing for a wide range of impedance values. Test stations in the manufacturing system may subsequently measure the verification standards to generate test measurement data.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: October 20, 2015
    Assignee: Apple Inc.
    Inventors: Jayesh Nath, Liang Han, Matthew A. Mow, Ming-Ju Tsai, Joshua G. Nickel, Hao Xu, Peter Bevelacqua, Mattia Pascolini, Robert W. Schlub, Ruben Caballero
  • Patent number: 9157930
    Abstract: Wireless electronic devices may include wireless communications circuitry such as a transceiver, antenna, and other wireless circuitry. The transceiver may be coupled to the antenna through a bidirectional switch connector. The switch connector may mate with a corresponding radio-frequency test probe that is connected to radio-frequency test equipment. When the test probe is mated with the switch connector, the transceiver may be decoupled from the antenna. During transceiver testing, radio-frequency test signals may be conveyed between the test unit and the transceiver using the test probe. During antenna testing, radio-frequency test signals may be conveyed between the test unit and the antenna using the test probe. Transceiver testing and antenna testing may, if desired, be conducted in parallel using the test probe.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: October 13, 2015
    Assignee: Apple Inc.
    Inventors: Joshua G. Nickel, Fernando Urioste, Justin Gregg, Adil Syed, Jason Sloey, Jonathan Haylock
  • Patent number: 9157954
    Abstract: Electronic device structures such as a conductive housing member that forms part of an antenna may be tested during manufacturing. A test system may be provided that includes a test probe configured to energize the conductive housing member or other conductive structures under test and that includes temporary test structures that may be placed in the vicinity of or in direct contact with the device structures during testing to facilitate detection of manufacturing defects. Test equipment such as a network analyzer may provide radio-frequency test signals in a range of frequencies. An antenna probe may be used to gather corresponding wireless radio-frequency signal data. Forward transfer coefficient data may be computed from the transmitted and received radio-frequency signals. The forward transfer coefficient data or other test data may be compared to reference data to determine whether the device structures contain a fault.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: October 13, 2015
    Assignee: Apple Inc.
    Inventor: Joshua G. Nickel
  • Patent number: 9154972
    Abstract: A wireless electronic device may be provided with antenna structures. The antenna structures may be formed from an antenna ground and an array of antenna resonating elements formed along its periphery. The antenna resonating elements may be formed from metal traces on a dielectric support structure that surrounds the antenna ground. The electronic device may be tested using a test system for detecting the presence of manufacturing/assembly defects. The test system may include an RF tester and a test fixture. The device under test (DUT) may be attached to the test fixture during testing. Multiple test probes arranged along the periphery of the DUT may be used to transmit and receive RF test signals for gathering scattering parameter measurements on the device under test. The scattering parameter measurements may then be compared to predetermined threshold values to determine whether the DUT contains any defects.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: October 6, 2015
    Assignee: Apple Inc.
    Inventors: Jerzy Guterman, Joshua G. Nickel, Boon W. Shiu, Mattia Pascolini
  • Patent number: 9084124
    Abstract: A wireless electronic device may contain at least one adjustable antenna tuning element for use in tuning the operating frequency range of the device. The antenna tuning element may include radio-frequency switches, continuously/semi-continuously adjustable components such as tunable resistors, inductors, and capacitors, and other load circuits that provide desired impedance characteristics. A test system that is used for performing passive radio-frequency (RF) testing on antenna tuning elements in partially assembled devices is provided. The test system may include an RF tester and a test host. The tester may be used to gather scattering parameter measurements from the antenna tuning element. The test host may be used to ensure that power and appropriate control signals are being supplied to the antenna tuning element so that the antenna tuning element is placed in desired tuning states during testing.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: July 14, 2015
    Assignee: Apple Inc.
    Inventors: Joshua G. Nickel, Jr-Yi Shen, Anand Lakshmanan, Jayesh Nath, Matthew A. Mow, Mattia Pascolini, Vishwanath Venkataraman, Peter Bevelacqua, Xin Cui
  • Publication number: 20150177277
    Abstract: A test system is provided for performing radio-frequency tests on an electronic device under test (DUT) having multiple antennas. The test system may include a test unit for generating radio-frequency test signals, a test enclosure, and a test antenna fixture. The test fixture may include tunable antenna circuitry, antenna tuning elements, a test sensor, a microcontroller, a battery, and a solar cell that charges the battery, each of which is mounted on a test fixture within the test enclosure. The test sensor may be used to detect stimuli issued by the DUT. In response to detecting the stimuli, the microcontroller may send control signals to the antenna tuning elements to configure the antenna circuitry in different modes. Each of the different modes may be optimized to test a selected one of the multiple antennas in the DUT when operating using different radio access technologies and at different frequencies.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 25, 2015
    Applicant: Apple Inc.
    Inventors: Joshua G. Nickel, Erica J. Tong, Vishwanath Venkataraman