Patents by Inventor Joung-Joo Lee

Joung-Joo Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220403505
    Abstract: Methods and apparatus for processing a substrate is provided herein. For example, a method for processing a substrate comprises depositing a silicide layer within a feature defined in a layer on a substrate, forming one of a metal liner layer or a metal seed layer atop the silicide layer within the feature via depositing at least one of molybdenum (Mo) or tungsten (W) using physical vapor deposition, and depositing Mo using at least one of chemical vapor deposition or atomic layer deposition atop the at least one of the metal liner layer or the metal seed layer, without vacuum break.
    Type: Application
    Filed: June 16, 2021
    Publication date: December 22, 2022
    Inventors: Annamalai LAKSHMANAN, Jacqueline S. WRENCH, Feihu WANG, Yixiong YANG, Joung Joo LEE, Srinivas GANDIKOTA, Sang-heum KIM, Zhebo CHEN, Gang SHEN
  • Publication number: 20220325410
    Abstract: Methods of depositing a metal film are discussed. A metal film is formed on the bottom of feature having a metal bottom and dielectric sidewalls. Formation of the metal film comprises exposure to a metal precursor and an alkyl halide catalyst while the substrate is maintained at a deposition temperature. The metal precursor has a decomposition temperature above the deposition temperature. The alkyl halide comprises carbon and halogen, and the halogen comprises bromine or iodine.
    Type: Application
    Filed: June 23, 2022
    Publication date: October 13, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Byunghoon Yoon, Liqi Wu, Joung Joo Lee, Kai Wu, Xi Cen, Wei Lei, Sang Ho Yu, Seshadri Ganguli
  • Publication number: 20220278108
    Abstract: Methods for DRAM device with a buried word line are described. The method includes forming a metal cap layer and a molybdenum conductor layer in a feature on a substrate. The method includes depositing the metal cap layer on the substrate by physical vapor deposition (PVD) and depositing the molybdenum conductor layer by atomic layer deposition (ALD) on the metal cap layer.
    Type: Application
    Filed: June 1, 2021
    Publication date: September 1, 2022
    Applicant: Applied Materials, Inc
    Inventors: Yixiong Yang, Jacqueline S. Wrench, Yong Yang, Srinivas Gandikota, Annamalai Lakshmanan, Joung Joo Lee, Feihu Wang, Seshadri Ganguli
  • Publication number: 20220277961
    Abstract: Methods for depositing a metal contact stack on a substrate are described. The method stack includes a metal cap layer and a molybdenum conductor layer. The method includes depositing the metal cap layer on the substrate by physical vapor deposition (PVD) and depositing the molybdenum conductor layer by atomic layer deposition (ALD) on the metal cap layer.
    Type: Application
    Filed: June 1, 2021
    Publication date: September 1, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Annamalai Lakshmanan, Jacqueline S. Wrench, Feihu Wang, Yixiong Yang, Joung Joo Lee, Srinivas Gandikota
  • Publication number: 20220231137
    Abstract: A contact stack of a semiconductor device comprises: a source/drain region; a metal silicide layer above the source/drain region; a metal cap layer directly on the metal silicide layer; and a conductor on the metal cap layer. A method comprises: depositing a metal silicide layer in a feature of a substrate; in the absence of an air break after the depositing of the metal silicide layer, preparing a metal cap layer directly on the metal silicide layer; and depositing a conductor on the metal cap layer.
    Type: Application
    Filed: January 19, 2021
    Publication date: July 21, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Bencherki Mebarki, Joung Joo Lee, Wenting Hou, Takashi Kuratomi, Avgerinos V. Gelatos, Jianxin Lei, Liqi Wu, Raymond Hoiman Hung, Tae Hong Ha, Xianmin Tang
  • Publication number: 20220223472
    Abstract: A method for forming conductive structures for a semiconductor device includes depositing a reflow material in features, e.g. vias, formed in a dielectric layer. A high melting point material is deposited in the feature and is reflowed and annealed in an ambient comprising one or more of hydrogen molecules, hydrogen ions, and hydrogen radicals at a temperature greater than 300° C. to fill the feature with a reflow material.
    Type: Application
    Filed: January 11, 2021
    Publication date: July 14, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Yi Luo, Rong Tao, Liqi Wu, Mingte Liu, Joung Joo Lee, Avgerinos V. Gelatos
  • Publication number: 20220068709
    Abstract: Apparatus and methods to provide electronic devices comprising tungsten film stacks are provided. A tungsten liner formed by physical vapor deposition is filled with a tungsten film formed by chemical vapor deposition directly over the tungsten liner.
    Type: Application
    Filed: August 25, 2020
    Publication date: March 3, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Feihu Wang, Joung Joo Lee, Xi Cen, Zhibo Yuan, Wei Lei, Kai Wu, Chunming Zhou, Zhebo Chen
  • Publication number: 20220020577
    Abstract: Methods and apparatus for processing substrates are disclosed. In some embodiments, a process chamber for processing a substrate includes: a body having an interior volume and a target to be sputtered, the interior volume including a central portion and a peripheral portion; a substrate support disposed in the interior volume opposite the target and having a support surface configured to support the substrate; a collimator disposed in the interior volume between the target and the substrate support; a first magnet disposed about the body proximate the collimator; a second magnet disposed about the body above the support surface and entirely below the collimator and spaced vertically below the first magnet; and a third magnet disposed about the body and spaced vertically between the first magnet and the second magnet. The first, second, and third magnets are configured to generate respective magnetic fields to redistribute ions over the substrate.
    Type: Application
    Filed: September 30, 2021
    Publication date: January 20, 2022
    Inventors: Xiaodong WANG, Joung Joo LEE, Fuhong ZHANG, Martin Lee RIKER, Keith A. MILLER, William FRUCHTERMAN, Rongjun WANG, Adolph Miller ALLEN, Shouyin ZHANG, Xianmin TANG
  • Patent number: 11222816
    Abstract: A method of filling structures on a substrate uses a semi-dynamic reflow process. The method may include depositing a metallic material on the substrate at a first temperature, heating the substrate to a second temperature higher than the first temperature wherein heating of the substrate causes a static reflow of the deposited metallic material on the substrate, stopping heating of the substrate, and depositing additional metallic material on the substrate causing a dynamic reflow of the deposited additional metallic material on the substrate. RF bias power may be applied during the dynamic reflow to facilitate in maintaining the temperature of the substrate.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: January 11, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Lanlan Zhong, Shirish A. Pethe, Fuhong Zhang, Joung Joo Lee, Kishor Kalathiparambil, Xiangjin Xie, Xianmin Tang
  • Publication number: 20210391176
    Abstract: Embodiments of the disclosure relate to methods for enlarging the opening width of substrate features by reducing the overhang of deposited films. Some embodiments of the disclosure utilize a highly energetic bias pulse to etch the deposited film near the opening of the substrate feature. Some embodiments of the disclosure etch the deposited film without damaging the underlying substrate.
    Type: Application
    Filed: June 16, 2020
    Publication date: December 16, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Bencherki Mebarki, Komal S. Garde, Kishor Kalathiparambil, Joung Joo Lee, Xianmin Tang
  • Publication number: 20210391214
    Abstract: A method of filling structures on a substrate uses a semi-dynamic reflow process. The method may include depositing a metallic material on the substrate at a first temperature, heating the substrate to a second temperature higher than the first temperature wherein heating of the substrate causes a static reflow of the deposited metallic material on the substrate, stopping heating of the substrate, and depositing additional metallic material on the substrate causing a dynamic reflow of the deposited additional metallic material on the substrate. RF bias power may be applied during the dynamic reflow to facilitate in maintaining the temperature of the substrate.
    Type: Application
    Filed: June 16, 2020
    Publication date: December 16, 2021
    Inventors: Lanlan ZHONG, Shirish A. PETHE, Fuhong ZHANG, Joung Joo LEE, Kishor KALATHIPARAMBIL, Xiangjin XIE, Xianmin TANG
  • Publication number: 20210320064
    Abstract: Methods and apparatus for creating a dual metal interconnect on a substrate. In some embodiments, a first liner of a first nitride material is deposited into at least one 1X feature and at least one wider than 1X feature, the first liner has a thickness of less than or equal to approximately 12 angstroms; a second liner of a first metal material is deposited into the at least one 1X feature and at least one wider than 1X feature; the first metal material is reflowed such that the at least one 1X feature is filled with the first metal material and the at least one wider than 1X feature remains unfilled with the first metal material; a second metal material is deposited on the first metal material, and the second metal material is reflowed such that the at least one wider than 1X feature is filled with the second metal material.
    Type: Application
    Filed: June 24, 2021
    Publication date: October 14, 2021
    Inventors: SUKETU A. PARIKH, RONG TAO, ROEY SHAVIV, JOUNG JOO LEE, SESHADRI GANGULI, SHIRISH PETHE, DAVID GAGE, JIANSHE TANG, MICHAEL A STOLFI
  • Publication number: 20210285102
    Abstract: Methods of depositing a metal film are discussed. A metal film is formed on the bottom of feature having a metal bottom and dielectric sidewalls. Formation of the metal film comprises exposure to a metal precursor and an alkyl halide catalyst while the substrate is maintained at a deposition temperature. The metal precursor has a decomposition temperature above the deposition temperature. The alkyl halide comprises carbon and halogen, and the halogen comprises bromine or iodine.
    Type: Application
    Filed: March 11, 2021
    Publication date: September 16, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Byunghoon Yoon, Liqi Wu, Joung Joo Lee, Kai Wu, Xi Cen, Wei Lei, Sang Ho Yu, Seshadri Ganguli
  • Publication number: 20210287898
    Abstract: Method for selectively oxidizing the dielectric surface of a substrate surface comprising a dielectric surface and a metal surface are discussed. Method for cleaning a substrate surface comprising a dielectric surface and a metal surface are also discussed. The disclosed methods oxidize the dielectric surface and/or clean the substrate surface using a plasma generated from hydrogen gas and oxygen gas. The disclosed method may be performed in a single step without the use of separate competing oxidation and reduction reactions. The disclosed methods may be performed at a constant temperature and/or within a single processing chamber.
    Type: Application
    Filed: March 10, 2021
    Publication date: September 16, 2021
    Applicant: Applied Materials, Inc
    Inventors: Bencherki Mebarki, Joung Joo Lee, Yi Xu, Yu Lei, Xianmin Tang, Kelvin Chan, Alexander Jansen, Philip A. Kraus
  • Patent number: 11075165
    Abstract: Methods and apparatus for creating a dual metal interconnect on a substrate. In some embodiments, a first liner of a first nitride material is deposited into at least one 1× feature and at least one wider than 1× feature, the first liner has a thickness of less than or equal to approximately 12 angstroms; a second liner of a first metal material is deposited into the at least one 1× feature and at least one wider than 1× feature; the first metal material is reflowed such that the at least one 1× feature is filled with the first metal material and the at least one wider than 1× feature remains unfilled with the first metal material; a second metal material is deposited on the first metal material, and the second metal material is reflowed such that the at least one wider than 1× feature is filled with the second metal material.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: July 27, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Suketu A Parikh, Rong Tao, Roey Shaviv, Joung Joo Lee, Seshadri Ganguli, Shirish Pethe, David Gage, Jianshe Tang, Michael A Stolfi
  • Patent number: 11037768
    Abstract: Methods and apparatus for controlling the ion fraction in physical vapor deposition processes are disclosed. In some embodiments, a process chamber for processing a substrate having a given diameter includes: an interior volume and a target to be sputtered, the interior volume including a central portion and a peripheral portion; a rotatable magnetron above the target to form an annular plasma in the peripheral portion; a substrate support disposed in the interior volume to support a substrate having the given diameter; a first set of magnets disposed about the body to form substantially vertical magnetic field lines in the peripheral portion; a second set of magnets disposed about the body and above the substrate support to form magnetic field lines directed toward a center of the support surface; a first power source to electrically bias the target; and a second power source to electrically bias the substrate support.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: June 15, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xiaodong Wang, Joung Joo Lee, Fuhong Zhang, Martin Lee Riker, Keith A. Miller, William Fruchterman, Rongjun Wang, Adolph Miller Allen, Shouyin Zhang, Xianmin Tang
  • Publication number: 20210118729
    Abstract: Embodiments disclosed herein generally relate to methods of depositing a plurality of layers. A doped copper seed layer is deposited in a plurality of feature definitions in a device structure. A first copper seed layer is deposited and then the first copper seed layer is doped to form a doped copper seed layer, or a doped copper seed layer is deposited directly. The doped copper seed layer leads to increased flowability, reducing poor step coverage, overhang, and voids in the copper layer.
    Type: Application
    Filed: September 29, 2020
    Publication date: April 22, 2021
    Inventors: Shirish PETHE, Fuhong ZHANG, Joung Joo LEE, Rui LI, Xiangjin XIE, Xianmin TANG
  • Patent number: 10950448
    Abstract: Methods and apparatus for control of the quality of films deposited via physical vapor deposition are provided herein. In some embodiments, a method of depositing a film using linear scan physical vapor deposition includes: determining a deposition rate of a material to be deposited on a substrate in a linear scan physical vapor deposition process; calculating a scan rate of the substrate to achieve deposition of the material to a desired thickness in a single pass when deposited at the deposition rate; and performing the linear scan physical vapor deposition process while moving the substrate at the calculated scan rate.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: March 16, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bencherki Mebarki, Joung Joo Lee, Xianmin Tang
  • Publication number: 20210071294
    Abstract: Methods and apparatus for controlling the ion fraction in physical vapor deposition processes are disclosed. In some embodiments, a physical vapor deposition chamber includes: a body having an interior volume and a lid assembly including a target to be sputtered; a magnetron disposed above the target, wherein the magnetron is configured to rotate a plurality of magnets about a central axis of the physical vapor deposition chamber; a substrate support disposed in the interior volume opposite the target and having a support surface configured to support a substrate; a collimator disposed between the target and the substrate support, the collimator having a central region having a first thickness and a peripheral region having a second thickness less than the first thickness; a first power source coupled to the target to electrically bias the target; and a second power source coupled to the substrate support to electrically bias the substrate support.
    Type: Application
    Filed: November 23, 2020
    Publication date: March 11, 2021
    Inventors: Xiaodong WANG, Joung Joo LEE, Fuhong ZHANG, Martin Lee RIKER, Keith A. MILLER, William FRUCHTERMAN, Rongjun WANG, Adolph Miller ALLEN, Shouyin ZHANG, Xianmin TANG
  • Patent number: 10927451
    Abstract: Methods and apparatus for processing a substrate. The method, for example, includes directing a stream of material from a PVD source at a first non-perpendicular angle to selectively deposit the material on a top portion of one or more features on the substrate and form a first overhang and a second overhang extending beyond a third sidewall and a fourth sidewall that are arranged parallel and opposite to each other and at non-zero angles to a first sidewall and a second sidewall, the first sidewall and the second sidewall defining a length of the one or more features, and the third sidewall and fourth sidewall defining a width of the one or more features; performing an etch process to selectively remove some of the first sidewall and the second sidewall while keeping the third sidewall and fourth sidewall in intact and maintaining the width of the one or more features.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: February 23, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bencherki Mebarki, Byeong Chan Lee, Huixiong Dai, Tejinder Singh, Joung Joo Lee, Xianmin Tang