Patents by Inventor Joy Laskar

Joy Laskar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080034171
    Abstract: Embodiments of the invention may provide for digital wavelet generators utilized in providing flexible spectrum-sensing resolutions for a Multi-Resolution Spectrum Sensing (MRSS) technique. Embodiments of the invention may provide for either multi-point or multi-rate digital wavelet generators. These digital wavelet generators may utilizing the same hardware resource optimally, and the various wavelet bases may be generated by changing the memory addressing schemes or clock speeds.
    Type: Application
    Filed: July 16, 2007
    Publication date: February 7, 2008
    Inventors: Taejoong Song, Jongmin Park, Youngsik Hur, Kyutae Lim, Chang-Ho Lee, Jeongsuk Lee, Kihong Kim, Seongsoo Lee, Haksun Kim, Joy Laskar
  • Publication number: 20080024336
    Abstract: Embodiments of the present invention may provide for a long delay generator for the spectrum sensing of cognitive radio systems. The long delay generator may comprise of an Analog-to-Digital Converter (ADC), memory element, and Digital-to-Analog Converter (DAC). The memory element may utilize shift register bank or Random-Access Memory (RAM) cells. The long delay generator may provide for a selectable delay by digitizing the received signal, delaying the received signal in the digital domain, and reconstructing the delayed signal as an analog. The analog delayed signal may then be compared or otherwise correlated with the original input signal using an analog auto-correlation technique to determine whether a meaningful signal type has been identified or otherwise detected.
    Type: Application
    Filed: July 16, 2007
    Publication date: January 31, 2008
    Inventors: Jongmin Park, Taejoong Song, Kyutae Lim, Chang-Ho Lee, Jeongsuk Lee, Kihong Kim, Seongsoo Lee, Haksun Kim, Joy Laskar
  • Patent number: 7307569
    Abstract: Data throughput rates are increased in an optical fiber communication system without requiring replacement of the existing optical fiber in a link. Channel throughput is increased by upgrading the components and circuitry in the head and terminal of an optical fiber communication system link. Aggregate throughput in a fiber optic link is increased beyond the range of conventional Wavelength Division Multiplexed (WDM) upgrades, while precluding the necessity of replacing existing fiber plants. The increase in system throughput is achieved by using advanced modulation techniques to encode greater amounts of data into the transmitted spectrum of a channel, thereby increasing the spectral efficiency of each channel. This novel method of increasing transmission capacity by upgrading the head and terminal of the system to achieve greater spectral efficiency and hence throughput, alleviates the need to replace existing fiber plants.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: December 11, 2007
    Assignee: Quellan, Inc.
    Inventors: Michael G. Vrazel, Stephen E. Ralph, Joy Laskar, Sungyong Jung, Vincent Mark Hietala, Edward Gebara
  • Publication number: 20070281629
    Abstract: Systems and methods may be provided for a CMOS RF antenna switch. The systems and methods for the CMOS RF antenna switch may include an antenna that is operative to transmit and receive signals over at least one radio frequency (RF) band, and a transmit switch coupled to the antenna, where the transmit switch is enabled to transmit a respective first signal to the antenna and disabled to prevent transmission of the first signal to the antenna the systems and methods for the CMOS RF antenna switch may further include a receiver switch coupled to the antenna, where the receiver switch forms a filter when enabled and a resonant circuit when disabled, where the filter provides for reception of a second signal received by the antenna, and where the resonant circuit blocks reception of at least the first signal.
    Type: Application
    Filed: May 25, 2007
    Publication date: December 6, 2007
    Inventors: Minsik Ahn, Chang-Ho Lee, Jaejoon Chang, Wangmyong Woo, Haksun Kim, Joy Laskar
  • Publication number: 20070273445
    Abstract: Disclosed is a gain boosting technique for use with millimeter-wave cascode amplifiers. The exemplary technique may be implemented using a 0.18 ?m SiGe process (FT=140 GHz). It has also been shown that the technique is effective for CMOS processes with comparable FT. An exemplary gain-enhanced cascode stage was measured to have higher than 9 dB gain with a 1-dB bandwidth above 6 GHz with a DC power consumption of 13 mW. In addition, one cascode stage without gain boosting may be cascaded with two gain-boosted cascode amplifier stages to implement a three-stage LNA. The measured stable gain is higher than 24 dB at 60 GHz with a 3-dB bandwidth of 3.1 GHz for 25 mW of DC power consumption. It is believed that this is the first 60 GHz LNA with a higher than 20 dB gain using a 0.18 ?m SiGe process.
    Type: Application
    Filed: May 9, 2007
    Publication date: November 29, 2007
    Inventors: Saikat Sarkar, Padmanava Sen, Stephane Pinel, Joy Laskar
  • Publication number: 20070222654
    Abstract: Data throughput rates are increased in an optical fiber communication system without requiring replacement of the existing optical fiber in a link. Channel throughput is increased by upgrading the components and circuitry in the head and terminal of an optical fiber communication system link. Aggregate throughput in a fiber optic link is increased beyond the range of conventional Wavelength Division Multiplexed (WDM) upgrades, while precluding the necessity of replacing existing fiber plants. The increase in system throughput is achieved by using advanced modulation techniques to encode greater amounts of data into the transmitted spectrum of a channel, thereby increasing the spectral efficiency of each channel. This novel method of increasing transmission capacity by upgrading the head and terminal of the system to achieve greater spectral efficiency and hence throughput, alleviates the need to replace existing fiber plants.
    Type: Application
    Filed: November 15, 2006
    Publication date: September 27, 2007
    Applicant: Quellan, Inc.
    Inventors: Michael Vrazel, Stephen Ralph, Joy Laskar, Sungyong Jung, Vincent Hietala, Edward Gebara
  • Patent number: 7253688
    Abstract: Provided is a multiband low noise amplifier including a first transistor, an input matching circuit, and a first capacitor. The first transistor includes a collector electrically connected to a first power supply, a grounded emitter, and a base connected to the other end of a first inductor having one end as an input end of the low noise amplifier. The input matching circuit is connected between the collector and the base of the first transistor. The first capacitor connected to the collector of the first transistior. The input matching circuit includes a varactor. The input matching circuit includes a second capacitor connected to the varactor. The input matching circuit includes a first resistor connected to the varactor. In the multiband low noise amplifier, a varactor having a variable capacitance is installed at an input end, thereby easily performing band switching through bias voltage control by a small amount and minimizing noises that may be caused by a control signal.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: August 7, 2007
    Assignees: Samsung Electronics Co., Ltd., Georgia Tech Research Corporation
    Inventors: Rahul Bhatia, Sang-Hyun Woo, Ji-Hoon Bang, Seong-Soo Lee, Chang-Ho Lee, Joy Laskar
  • Patent number: 7253707
    Abstract: An active inductor capable of tuning a self-resonant frequency, an inductance, a Q factor, and a peak Q frequency by applying a tunable feedback resistor to a cascode-grounded active inductor is disclosed. The tunable active inductor includes a first transistor having a source connected to a power supply voltage and a gate connected to first bias voltage; a second transistor having a drain connected to a drain of the first transistor and a gate connected to a second bias voltage; a third transistor having a drain connected to a source of the second transistor and a source connected to a ground voltage; a fourth transistor having a drain connected to a gate of the third transistor, a source connected to the ground voltage and a gate connected to a third bias voltage; a fifth transistor having a source connected to the drain of the fourth transistor and a drain connected to the power supply voltage.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: August 7, 2007
    Assignees: Samsung Electronics Co., Ltd., Georgia Tech Research Corporation
    Inventors: Rajarshi Mukhopadhy, Sebastien Nuttinck, Sang-Hyun Woo, Jong-Han Kim, Seong-Soo Lee, Chang-Ho Lee, Joy Laskar
  • Publication number: 20070126491
    Abstract: Provided is a mixer for use in a direct conversion receiver. The mixer includes Field Effect Transistors (FETs), a current source (IBias), two load resistors (RLoad), another FET, and two inductors L1 and L2. The FET M21 constitutes a current bleeding circuitry and the other components except for the two inductors L1 and L2 constitute a so-called Gilbert cell mixer.
    Type: Application
    Filed: October 24, 2006
    Publication date: June 7, 2007
    Applicants: SAMSUNG ELECTRONICS CO., LTD., Georgia Tech Research Corporation
    Inventors: Sang-Hyun Woo, Jin-Sung Park, Chang-Ho Lee, Joy Laskar
  • Publication number: 20070060059
    Abstract: Signals propagating on an aggressor communication channel can cause detrimental interference in a victim communication channel. A signal processing circuit can generate an interference cancellation signal that, when applied to the victim communication channel, cancels the detrimental interference. The signal processing circuit can dynamically adjust or update two or more aspects of the interference cancellation signal, such as an amplitude or gain parameter and a phase or delay parameter. Via the dynamic adjustments, the signal processing circuit can adapt to changing conditions, thereby maintaining an acceptable level of interference cancellation in a fluctuating operating environment. A control circuit that implements the parametric adjustments can have at least two modes of operation, one for adjusting the amplitude parameter and one for adjusting the phase parameter. The modes can be selectable or can be intermittently available, for example.
    Type: Application
    Filed: June 9, 2006
    Publication date: March 15, 2007
    Applicant: Quellan, Inc.
    Inventors: Andrew Kim, Edward Gebara, Bruce Schmukler, Mark Dickmann, Michael Farrell, Michael Vrazel, David Stelliga, Joy Laskar, Charles Summers
  • Patent number: 7173551
    Abstract: Data throughput rates are increased in an optical fiber communication system without requiring replacement of the existing optical fiber in a link. Channel throughput is increased by upgrading the components and circuitry in the head and terminal of an optical fiber communication system link. Aggregate throughput in a fiber optic link is increased beyond the range of conventional Wavelength Division Multiplexed (WDM) upgrades, while precluding the necessity of replacing existing fiber plants. The increase in system throughput is achieved by using advanced modulation techniques to encode greater amounts of data into the transmitted spectrum of a channel, thereby increasing the spectral efficiency of each channel. This novel method of increasing transmission capacity by upgrading the head and terminal of the system to achieve greater spectral efficiency and hence throughput, alleviates the need to replace existing fiber plants.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: February 6, 2007
    Assignee: Quellan, Inc.
    Inventors: Michael G. Vrazel, Stephen E. Ralph, Joy Laskar, Sungyong Jung, Vincent Mark Hietala, Edward Gebara
  • Publication number: 20060291598
    Abstract: A wireless communication system can comprise two or more antennas that interfere with one another via free space coupling, surface wave crosstalk, dielectric leakage, or other interference effect. The interference effect can produce an interference signal on one of the antennas. A cancellation device can suppress antenna interference by generating an estimate of the interference signal and subtracting the estimate from the interference signal. The cancellation device can generate the estimate based on sampling signals on an antenna that generates the interference or on an antenna that receives the interference. The cancellation device can comprise a model of the crosstalk effect. Transmitting test signals on the communication system can define or refine the model.
    Type: Application
    Filed: August 30, 2006
    Publication date: December 28, 2006
    Applicant: Quellan, Inc.
    Inventors: Edward Gebara, Joy Laskar, Emmanouil Tentzeris, Andrew Joo Kim
  • Publication number: 20060250308
    Abstract: A method of fabricating an ultra-high frequency module is disclosed. The method includes providing a top layer; drilling the top layer; milling the top layer; providing a bottom; milling the bottom layer to define a bottom layer cavity; aligning the top layer and the bottom layer; and adhering the top layer to the bottom layer. The present invention also includes an ultra-high frequency module operating at ultra-high speeds having a top layer, the top layer defining a top layer cavity; a bottom layer, the bottom layer defining a bottom layer cavity; and an adhesive adhering both the top layer to the bottom layer, wherein the top layer and the bottom layer are formed from a large area panel of a printed circuit board.
    Type: Application
    Filed: March 31, 2006
    Publication date: November 9, 2006
    Applicant: Georgia Tech Research Corporation
    Inventors: Stephane Pinel, Joy Laskar
  • Publication number: 20060232469
    Abstract: The present invention describes a receiver assembly for receiving an analog signal and converting the analog signal to a digital signal. The receiver assembly is, preferably, capable of receiving a signal operating at approximately 60 GHz. The receiver assembly includes a filter, a down converter, a demodulator, a latch, a FIFO, and a logic circuit. A method of converting the 60 GHz analog signal to a digital signal is also described.
    Type: Application
    Filed: March 31, 2006
    Publication date: October 19, 2006
    Applicant: Georgia Tech Research Corporation
    Inventors: Stephane Pinel, Joy Laskar
  • Patent number: 7123676
    Abstract: A wireless communication system can comprise two or more antennas that interfere with one another via free space coupling, surface wave crosstalk, dielectric leakage, or other interference effect. The interference effect can produce an interference signal on one of the antennas. A cancellation device can suppress antenna interference by generating an estimate of the interference signal and subtracting the estimate from the interference signal. The cancellation device can generate the estimate based on sampling signals on an antenna that generates the interference or on an antenna that receives the interference. The cancellation device can comprise a model of the crosstalk effect. Transmitting test signals on the communication system can define or refine the model.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: October 17, 2006
    Assignee: Quellan, Inc.
    Inventors: Edward Gebara, Joy Laskar, Emmanouil M. Tentzeris, Andrew Joo Kim
  • Publication number: 20060223439
    Abstract: A wireless repeater assembly is described. The wireless repeater assembly includes a receiver for receiving wireless data communications, wherein the receiver includes a receiving antenna for receiving analog signals; a receiver filter adapted to enable frequencies of a predetermined range to pass onto a receiver amplifier; and the receiver amplifier for boosting a signal emitted from the receiver filter; a transmitter for transmitting wireless data communications, wherein the transmitter includes a transmitter amplifier for boosting a signal coming from the receiver; a transmitter filter adapted to enable frequencies of a predetermined range to pass onto the transmitting antenna; and a transmitting antenna for transmitting signals from the repeater assembly; and a hard wire connection between the receiver and the transmitter, wherein the receiver and the transmitter are in wired communication. The wireless repeater assembly can operate at approximately 60 GHz.
    Type: Application
    Filed: March 31, 2006
    Publication date: October 5, 2006
    Applicant: Georgia Tech Research Corporation
    Inventors: Stephane Pinel, Joy Laskar
  • Patent number: 7113008
    Abstract: A frequency mixing apparatus is provided. In the frequency mixing apparatus, a PMOS transistor is coupled to an NMOS transistor in a cascode configuration and an LO signal is applied to the bulks of the PMOS and NMOS transistors so that an input signal applied to their gates is mixed with the LO signal. High isolation between the bulks and gates of the transistors resulting from application of the LO signal to the bulks prevents leakage of the LO signal, thereby decreasing a DC offset voltage. This renders the frequency mixing applicable to a DCR. Also, due to the cascade configuration similar to an inverter configuration, the frequency mixing apparatus can be incorporated in an FPGA of a MODEM in SDR applications. Frequency mixing based on switching of a threshold voltage decreases a noise factor and enables frequency mixing in a low supply voltage range, thereby decreasing power consumption.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: September 26, 2006
    Assignees: Samsung Electronics Co., Ltd., Georgia Tech Research Corporation
    Inventors: Bevin George Perumana, Sudipto Chakraborty, Chang-Ho Lee, Joy Laskar, Sang-Hyun Woo
  • Publication number: 20060197617
    Abstract: Disclosed is an ultra wide band signal generator. The ultra wide band signal generator generates a signal of a required frequency using a harmonic signal having a frequency range of a ultra wide band (UWB). The ultra wide band signal generator includes an active inductor for generating harmonic signals having power strengths substantially equal to each other within a non-linear operation range, the tunable active inductor capable of tuning a value thereof, an oscillator for amplifying and outputting the harmonic signals generated from the active inductor by frequency-transiting the harmonic signals into high frequency bands, and a filter for selectively outputting one of the harmonic signals output from the oscillator.
    Type: Application
    Filed: February 2, 2006
    Publication date: September 7, 2006
    Applicants: SAMSUNG ELECTRONICS CO., LTD., Georgia Tech Research Corporation
    Inventors: Rajarshi Mukhopadhy, Sebastien Nuttinck, Yun-Seo Park, Sang-Woong Yoon, Sang-Hyun Woo, Hyun-Il Kang, Chang-Ho Lee, Joy Laskar
  • Publication number: 20060194556
    Abstract: Disclosed is a local oscillation circuit for a direct conversion receiver, which includes a local oscillator for outputting a local oscillation signal of a predetermined frequency; and a fractional signal generator for converting the local oscillation signal into a fractional harmonic signal, which has a frequency equal to a frequency of a received signal, and outputting the converted signal to a down converter. The fractional signal generator includes a divider for dividing a frequency of an output signal of the fractional signal generator by a predetermined integer; and a mixer for mixing the local oscillation signal and an output signal of the divider.
    Type: Application
    Filed: February 2, 2006
    Publication date: August 31, 2006
    Applicants: Samsung Electronics Co., Ltd., GEORGIA TECH RESEARCH CO.
    Inventors: Yun-Seo Park, Sang-Hyun Woo, Jong-Ae Park, Seong-Soo Lee, Chang-Ho Lee, Joy Laskar
  • Publication number: 20060178157
    Abstract: Signals propagating on an aggressor communication channel can cause interference in a victim communication channel. A sensor coupled to the aggressor channel can obtain a sample of the aggressor signal. The sensor can be integrated with or embedded in a system, such as a flex circuit or a circuit board, that comprises the aggressor channel. The sensor can comprise a dedicated conductor or circuit trace that is near an aggressor conductor, a victim conductor, or an EM field associated with the interference. An interference compensation circuit can receive the sample from the sensor. The interference compensation circuit can have at least two operational modes of operation. In the first mode, the circuit can actively generate or output a compensation signal that cancels, corrects, or suppresses the interference. The second mode can be a standby, idle, power-saving, passive, or sleep mode.
    Type: Application
    Filed: December 14, 2005
    Publication date: August 10, 2006
    Applicant: Quellan, Inc.
    Inventors: Edward Gebara, Andrew Kim, Joy Laskar, Anthony Stelliga, Emmanouil Tentzeris