Patents by Inventor Julian Latelle Greenwood, III

Julian Latelle Greenwood, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240118509
    Abstract: A fiber optic cable includes a cable core of core elements and a protective sheath surrounding the core elements, an armor surrounding the cable core, the armor comprising a single overlap portion when the fiber optic cable is viewed in cross-section, and a jacket surrounding the armor, the jacket having at least two longitudinal discontinuities extruded therein. A method of accessing the cable core without the use of ripcords includes removing a portion of the armor in an access section by pulling the armor away from the cable core so that an overlap portion separates around the cable core as it is being pulled past the cable core. A protective sheath protects the core elements as the armor is being pulled around the cable core.
    Type: Application
    Filed: December 18, 2023
    Publication date: April 11, 2024
    Inventors: Bradley Jerome Blazer, Rodney Maurice Burns, James Garrett Dewell, Julian Latelle Greenwood, III, Keith Aaron Greer, Warren Welborn McAlpine
  • Publication number: 20240061199
    Abstract: An optical communication cable includes a cable jacket formed from a first material, a plurality of core elements located within the cable jacket, and an armor layer surrounding the plurality of core elements within the cable jacket, wherein the armor layer is a multi-piece layer having a first armor segment extending a portion of the distance around the plurality of core elements and a second armor segment extending a portion of the distance around the plurality of core elements, wherein a first lateral edge of the first armor segment is adjacent a first lateral edge of the second armor segment and a second lateral edge of the first armor segment is adjacent a second lateral edge of the second armor segment such that the combination of the first armor segment and the second armor segment completely surround the plurality of core elements.
    Type: Application
    Filed: November 3, 2023
    Publication date: February 22, 2024
    Inventors: Bradley Jerome Blazer, Michael John Gimblet, Julian Latelle Greenwood, III, Jason Clay Lail, Warren Welborn McAlpine, Eric John Mozdy
  • Patent number: 11860430
    Abstract: A fiber optic cable includes a cable core of core elements and a protective sheath surrounding the core elements, an armor surrounding the cable core, the armor comprising a single overlap portion when the fiber optic cable is viewed in cross-section, and a jacket surrounding the armor, the jacket having at least two longitudinal discontinuities extruded therein. A method of accessing the cable core without the use of ripcords includes removing a portion of the armor in an access section by pulling the armor away from the cable core so that an overlap portion separates around the cable core as it is being pulled past the cable core. A protective sheath protects the core elements as the armor is being pulled around the cable core.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: January 2, 2024
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Bradley Jerome Blazer, Rodney Maurice Burns, James Garrett Dewell, Julian Latelle Greenwood, III, Keith Aaron Greer, Warren Welborn McAlpine
  • Publication number: 20230418012
    Abstract: An optical fiber cable including a central strength member, a first plurality of tight-buffered ribbon stacks, a binder film, and a cable sheath. The central strength member extends along a longitudinal axis of the optical fiber cable. The tight-buffered ribbon stacks are SZ-stranded around the central strength member. An interstitial space is provided between adjacent tight-buffered ribbon stacks. A binder film continuously and contiguously surrounds the first plurality of tight-buffered ribbon stacks along the longitudinal axis. The binder film includes first portions and at least one second portion. Each of the at least one second portion of the binder film extends into one of the interstitial spaces of the first plurality of tight-buffered ribbon stacks. The cable sheath continuously and contiguously surrounds the binder film along the longitudinal axis, and the cable sheath is coupled to the first portions of the binder film.
    Type: Application
    Filed: September 14, 2023
    Publication date: December 28, 2023
    Inventors: Bradley Jerome Blazer, Julian Latelle Greenwood, III, Warren Welborn McAlpine, David Alan Seddon
  • Patent number: 11822139
    Abstract: An optical communication cable includes a cable jacket formed from a first material, a plurality of core elements located within the cable jacket, and an armor layer surrounding the plurality of core elements within the cable jacket, wherein the armor layer is a multi-piece layer having a first armor segment extending a portion of the distance around the plurality of core elements and a second armor segment extending a portion of the distance around the plurality of core elements, wherein a first lateral edge of the first armor segment is adjacent a first lateral edge of the second armor segment and a second lateral edge of the first armor segment is adjacent a second lateral edge of the second armor segment such that the combination of the first armor segment and the second armor segment completely surround the plurality of core elements.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: November 21, 2023
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Bradley Jerome Blazer, Michael John Gimblet, Julian Latelle Greenwood, III, Jason Clay Lail, Warren Welborn McAlpine, Eric John Mozdy
  • Patent number: 11782229
    Abstract: An optical fiber cable including a central strength member, a first plurality of tight-buffered ribbon stacks, a binder film, and a cable sheath. The central strength member extends along a longitudinal axis of the optical fiber cable. The tight-buffered ribbon stacks are SZ-stranded around the central strength member. An interstitial space is provided between adjacent tight-buffered ribbon stacks. A binder film continuously and contiguously surrounds the first plurality of tight-buffered ribbon stacks along the longitudinal axis. The binder film includes first portions and at least one second portion. Each of the at least one second portion of the binder film extends into one of the interstitial spaces of the first plurality of tight-buffered ribbon stacks. The cable sheath continuously and contiguously surrounds the binder film along the longitudinal axis, and the cable sheath is coupled to the first portions of the binder film.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: October 10, 2023
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Bradley Jerome Blazer, Julian Latelle Greenwood, III, Warren Welborn McAlpine, David Alan Seddon
  • Publication number: 20220291467
    Abstract: An optical communication cable includes a cable jacket formed from a first material, a plurality of core elements located within the cable jacket, and an armor layer surrounding the plurality of core elements within the cable jacket, wherein the armor layer is a multi-piece layer having a first armor segment extending a portion of the distance around the plurality of core elements and a second armor segment extending a portion of the distance around the plurality of core elements, wherein a first lateral edge of the first armor segment is adjacent a first lateral edge of the second armor segment and a second lateral edge of the first armor segment is adjacent a second lateral edge of the second armor segment such that the combination of the first armor segment and the second armor segment completely surround the plurality of core elements.
    Type: Application
    Filed: May 27, 2022
    Publication date: September 15, 2022
    Inventors: Bradley Jerome Blazer, Michael John Gimblet, Julian Latelle Greenwood, III, Jason Clay Lail, Warren Welborn McAlpine, Eric John Mozdy
  • Publication number: 20220260796
    Abstract: An optical fiber cable including a central strength member, a first plurality of tight-buffered ribbon stacks, a binder film, and a cable sheath. The central strength member extends along a longitudinal axis of the optical fiber cable. The tight-buffered ribbon stacks are SZ-stranded around the central strength member. An interstitial space is provided between adjacent tight-buffered ribbon stacks. A binder film continuously and contiguously surrounds the first plurality of tight-buffered ribbon stacks along the longitudinal axis. The binder film includes first portions and at least one second portion. Each of the at least one second portion of the binder film extends into one of the interstitial spaces of the first plurality of tight-buffered ribbon stacks. The cable sheath continuously and contiguously surrounds the binder film along the longitudinal axis, and the cable sheath is coupled to the first portions of the binder film.
    Type: Application
    Filed: May 9, 2022
    Publication date: August 18, 2022
    Inventors: Bradley Jerome Blazer, Julian Latelle Greenwood, III, Warren Welborn McAlpine, David Alan Seddon
  • Publication number: 20220206237
    Abstract: A fiber optic cable includes a cable core of core elements and a protective sheath surrounding the core elements, an armor surrounding the cable core, the armor comprising a single overlap portion when the fiber optic cable is viewed in cross-section, and a jacket surrounding the armor, the jacket having at least two longitudinal discontinuities extruded therein. A method of accessing the cable core without the use of ripcords includes removing a portion of the armor in an access section by pulling the armor away from the cable core so that an overlap portion separates around the cable core as it is being pulled past the cable core. A protective sheath protects the core elements as the armor is being pulled around the cable core.
    Type: Application
    Filed: March 16, 2022
    Publication date: June 30, 2022
    Inventors: Bradley Jerome Blazer, Rodney Maurice Burns, James Garrett Dewell, Julian Latelle Greenwood, III, Keith Aaron Greer, Warren Welborn McAlpine
  • Patent number: 11353669
    Abstract: An optical communication cable includes a cable jacket formed from a first material, a plurality of core elements located within the cable jacket, and an armor layer surrounding the plurality of core elements within the cable jacket, wherein the armor layer is a multi-piece layer having a first armor segment extending a portion of the distance around the plurality of core elements and a second armor segment extending a portion of the distance around the plurality of core elements, wherein a first lateral edge of the first armor segment is adjacent a first lateral edge of the second armor segment and a second lateral edge of the first armor segment is adjacent a second lateral edge of the second armor segment such that the combination of the first armor segment and the second armor segment completely surround the plurality of core elements.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: June 7, 2022
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Bradley Jerome Blazer, Michael John Gimblet, Julian Latelle Greenwood, III, Jason Clay Lail, Warren Welborn McAlpine, Eric John Mozdy
  • Patent number: 11340414
    Abstract: An optical fiber cable including a central strength member, a first plurality of tight-buffered ribbon stacks, a binder film, and a cable sheath. The central strength member extends along a longitudinal axis of the optical fiber cable. The tight-buffered ribbon stacks are SZ-stranded around the central strength member. An interstitial space is provided between adjacent tight-buffered ribbon stacks. A binder film continuously and contiguously surrounds the first plurality of tight-buffered ribbon stacks along the longitudinal axis. The binder film includes first portions and at least one second portion. Each of the at least one second portion of the binder film extends into one of the interstitial spaces of the first plurality of tight-buffered ribbon stacks. The cable sheath continuously and contiguously surrounds the binder film along the longitudinal axis, and the cable sheath is coupled to the first portions of the binder film.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: May 24, 2022
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Bradley Jerome Blazer, Julian Latelle Greenwood, III, Warren Welborn McAlpine, David Alan Seddon
  • Patent number: 11287589
    Abstract: A fiber optic cable includes a cable core of core elements and a protective sheath surrounding the core elements, an armor surrounding the cable core, the armor comprising a single overlap portion when the fiber optic cable is viewed in cross-section, and a jacket surrounding the armor, the jacket having at least two longitudinal discontinuities extruded therein. A method of accessing the cable core without the use of ripcords includes removing a portion of the armor in an access section by pulling the armor away from the cable core so that an overlap portion separates around the cable core as it is being pulled past the cable core. A protective sheath protects the core elements as the armor is being pulled around the cable core.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: March 29, 2022
    Assignee: Corning Optical Communications LLC
    Inventors: Bradley Jerome Blazer, Rodney Maurice Burns, James Garrett Dewell, Julian Latelle Greenwood, III, Keith Aaron Greer, Warren Welborn McAlpine
  • Publication number: 20210003795
    Abstract: An optical fiber cable including a central strength member, a first plurality of tight-buffered ribbon stacks, a binder film, and a cable sheath. The central strength member extends along a longitudinal axis of the optical fiber cable. The tight-buffered ribbon stacks are SZ-stranded around the central strength member. An interstitial space is provided between adjacent tight-buffered ribbon stacks. A binder film continuously and contiguously surrounds the first plurality of tight-buffered ribbon stacks along the longitudinal axis. The binder film includes first portions and at least one second portion. Each of the at least one second portion of the binder film extends into one of the interstitial spaces of the first plurality of tight-buffered ribbon stacks. The cable sheath continuously and contiguously surrounds the binder film along the longitudinal axis, and the cable sheath is coupled to the first portions of the binder film.
    Type: Application
    Filed: June 30, 2020
    Publication date: January 7, 2021
    Inventors: Bradley Jerome Blazer, Julian Latelle Greenwood, III, Warren Welborn McAlpine, David Alan Seddon
  • Patent number: 10598882
    Abstract: Cables have dielectric armor with an armor profile that resembles conventional metal armored cable. The armor can be formed as a single layer, without requiring an outer jacket layer. The dielectric armor provides additional crush and impact resistance for the optical fibers and/or fiber optic assembly therein. The armored cables recover substantially from deformation caused by crush loads. Additionally, the armored fiber optic assemblies can have any suitable flame and/or smoke rating for meeting the requirements of the intended space. The assemblies can additionally be lightweight and relatively inexpensive to manufacture.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: March 24, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Gregory Blake Bohler, Julian Latelle Greenwood, III, Keith Aaron Greer, Wesley Brian Nicholson, Kimberly Dawn Slan
  • Patent number: 10578820
    Abstract: An optical communication cable subassembly includes a cable core having optical fibers each comprising a core surrounded by a cladding, buffer tubes surrounding subsets of the optical fibers, and a binder film surrounding the buffer tubes. Armor surrounds the cable core, the binder film is bonded to an interior of the armor, and water-absorbing powder particles are provided on an interior surface of the binder film.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: March 3, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Mario Sergio Sandate Aguilar, Michael John Gimblet, Julian Latelle Greenwood, III, Warren Welborn McAlpine
  • Publication number: 20190154943
    Abstract: Cables jacket are formed by extruding discontinuities in a main cable jacket portion. The discontinuities allow the jacket to be torn to provide access to the cable core. The armor cables have an armor layer with armor access features arranged to work in combination with the discontinuities in the cable jacket to facilitate access to the cable core.
    Type: Application
    Filed: January 24, 2019
    Publication date: May 23, 2019
    Inventors: Michael John Gimblet, Julian Latelle Greenwood, III
  • Patent number: 10254494
    Abstract: An optical communication cable subassembly includes a cable core having optical fibers each comprising a core surrounded by a cladding, buffer tubes surrounding subsets of the optical fibers, and a binder film surrounding the buffer tubes. Armor surrounds the cable core, the binder film is bonded to an interior of the armor, and water-absorbing powder particles are provided on an interior surface of the binder film.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: April 9, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Michael John Gimblet, Julian Latelle Greenwood, III, Mario Sergio Sandate Aguilar, Warren Welborn McAlpine
  • Patent number: 10228529
    Abstract: Cables jacket are formed by extruding discontinuities in a main cable jacket portion. The discontinuities allow the jacket to be torn to provide access to the cable core. The armor cables have an armor layer with armor access features arranged to work in combination with the discontinuities in the cable jacket to facilitate access to the cable core.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: March 12, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Michael John Gimblet, Julian Latelle Greenwood, III
  • Patent number: 10126517
    Abstract: A fiber optic cable includes a core, armor surrounding the core, and a jacket surrounding the armor. The core includes tubes, each tube having a passage defined therein, optical fibers positioned in the passages, and a binder sleeve defining an exterior of the core. Portions of the binder sleeve are directly bonded to the armor, while other portions are not. Spacing between the armor and the core, as well as the bond between the armor and binder sleeve, facilitate tubing-off of an end section of the cable to include removal of the binder sleeve.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: November 13, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Jeffery Alan Clampitt, Julian Latelle Greenwood, III, Leigh Rooker Josey, Warren Welborn McAlpine, Eric John Mozdy, Jorge Roberto Serrano
  • Patent number: 10078191
    Abstract: An optical cable is provided. The optical cable includes a tubular, elongate body having an inner surface defining a cavity extending between first and second ends of the elongate body and an optical transmission element located with the cavity. The optical cable includes a coupling or bonding structure non-permanently and non-rigidly joining the outer surface of the optical transmission element to the elongate body at a plurality of periodic contact zones such that relative movement between the optical transmission element and the elongate body is resisted.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: September 18, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Bradley Jerome Blazer, Yangbin Chen, Ching-Kee Chien, Julian Latelle Greenwood, III, Jason Clay Lail, Warren Welborn McAlpine, Christopher Mark Quinn, David Alan Seddon