Patents by Inventor Juliet T. Gopinath

Juliet T. Gopinath has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11067511
    Abstract: Methods and devices for real-time detection of fouling chemistry are described herein. In one aspect, a method of detecting and characterizing fouling of a membrane used for separation in a fluid-based system can include illuminating the membrane with one or more light sources, collecting Raman spectroscopy data from the membrane, and based on the Raman data, determining at least one selected from the group consisting of: presence or absence of membrane fouling, severity of membrane fouling, and composition of the membrane fouling, where the Raman spectroscopy is selected from the group consisting of Coherent Anti-Stokes Raman Scattering (CARS), Stimulated Raman Scattering (SRS), and spontaneous Raman Scattering.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: July 20, 2021
    Assignee: The Regents of the University of Colorado, a body corporate
    Inventors: Joseph J. Brown, Omkar D. Supekar, Victor M. Bright, Juliet T. Gopinath, Alan R. Greenberg
  • Publication number: 20200348505
    Abstract: The present disclosure relates optical imaging devices and methods useful in biological and medical imaging applications. In one embodiment, an optical imaging device includes a flexible lightguide having a first end and a second end, the output of the source of pulsed infrared radiation being optically coupled to the first end of the flexible lightguide; a lens assembly attached to and optically coupled to the second end of the flexible lightguide, the lens assembly comprising a variable-focus lens element, the a variable-focus lens element having a tunable focal length; and a photodetector coupled to the flexible lightguide to detect radiation propagating from the second end toward the first end of the flexible lightguide. The optical imaging devices and methods can be used in both confocal and multi-photon techniques.
    Type: Application
    Filed: April 20, 2020
    Publication date: November 5, 2020
    Inventors: Juliet T. Gopinath, Emily A. Gibson, Victor M. Bright, Richard Weir, Diego Restrepo, Baris Ozbay
  • Publication number: 20200183147
    Abstract: Electrowetting-actuated optical shutters based on total internal reflection or beam steering. An electrowetting cell contains a conducting liquid and a non-conducting liquid configured to form a liquid-liquid interface extending to the inner walls of the cell. A beam of light is directed to the liquid-liquid interface at an angle near the total internal reflection angle of the interface. Voltage changes the shape of the liquid-liquid interface, without separating it from the inner walls of the cell. Thus, when depending on the voltage applied, the beam is either transmitted in part or substantially totally internal reflected.
    Type: Application
    Filed: February 13, 2020
    Publication date: June 11, 2020
    Inventors: Juliet T. Gopinath, Victor M. Bright, Andrew M. Jones
  • Patent number: 10634899
    Abstract: The present disclosure relates optical imaging devices and methods useful in biological and medical imaging applications. In one embodiment, an optical imaging device includes a flexible lightguide having a first end and a second end, the output of the source of pulsed infrared radiation being optically coupled to the first end of the flexible lightguide; a lens assembly attached to and optically coupled to the second end of the flexible lightguide, the lens assembly comprising a variable-focus lens element, the a variable-focus lens element having a tunable focal length; and a photodetector coupled to the flexible lightguide to detect radiation propagating from the second end toward the first end of the flexible lightguide. The optical imaging devices and methods can be used in both confocal and multi-photon techniques.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: April 28, 2020
    Assignee: The Regents of the University of Colorado, A Body Corporate
    Inventors: Juliet T. Gopinath, Emily A. Gibson, Victor M. Bright, Richard Weir, Diego Restrepo, Baris Ozbay
  • Patent number: 10598919
    Abstract: Electrowetting-actuated optical shutters based on total internal reflection or beam steering. An electrowetting cell contains a conducting liquid and a non-conducting liquid configured to form a liquid-liquid interface extending to the inner walls of the cell. A beam of light is directed to the liquid-liquid interface at an angle near the total internal reflection angle of the interface. Voltage changes the shape of the liquid-liquid interface, without separating it from the inner walls of the cell. Thus, when depending on the voltage applied, the beam is either transmitted in part or substantially totally internal reflected.
    Type: Grant
    Filed: March 5, 2017
    Date of Patent: March 24, 2020
    Assignee: The Regents of the University of Colorado
    Inventors: Juliet T. Gopinath, Victor M. Bright, Andrew M. Jones
  • Publication number: 20200088647
    Abstract: Methods and devices for real-time detection of fouling chemistry are described herein. In one aspect, a method of detecting and characterizing fouling of a membrane used for separation in a fluid-based system can include illuminating the membrane with one or more light sources, collecting Raman spectroscopy data from the membrane, and based on the Raman data, determining at least one selected from the group consisting of: presence or absence of membrane fouling, severity of membrane fouling, and composition of the membrane fouling, where the Raman spectroscopy is selected from the group consisting of Coherent Anti-Stokes Raman Scattering (CARS), Stimulated Raman Scattering (SRS), and spontaneous Raman Scattering.
    Type: Application
    Filed: September 19, 2019
    Publication date: March 19, 2020
    Inventors: JOSEPH J. BROWN, OMKAR D. SUPEKAR, VICTOR M. BRIGHT, JULIET T. GOPINATH, ALAN R. GREENBERG
  • Publication number: 20200073100
    Abstract: The present disclosure provides methods and systems for modulation and imaging of tissue.
    Type: Application
    Filed: August 30, 2019
    Publication date: March 5, 2020
    Inventors: Emily A. Gibson, Cristin Welle, Diego Restrepo, Douglas Shepherd, Juliet T. Gopinath, Victor M. Bright, Robert H. Cormack, loannis Kymissis
  • Publication number: 20190353892
    Abstract: A system for high resolution multiphoton excitation microscopy is described herein. In one embodiment, the system may include an electrowetting on dielectric (EWOD) prism optically coupled to an excitation source, the EWOD prism adapted or configured to: receive a light beam from the excitation source, and project the received light beam onto a sample plane based on a tunable transmission angle of the EWOD prism, and a fluorescence imaging microscope adapted or configured to: receive a fluorescence signal from the sample plane based on the projected light beam, and relay the fluorescence signal from the sample plane to a set of detectors.
    Type: Application
    Filed: May 15, 2019
    Publication date: November 21, 2019
    Inventors: JULIET T. GOPINATH, VICTOR M. BRIGHT, OMKAR D. SUPEKAR, WEI YANG LIM, MO ZOHRABI
  • Publication number: 20190280453
    Abstract: A compact diode laser achieves high-power, short duration output pulses by separating the lasing action from the pulse-generating mechanism. A diode seed source is configured for gain-switching via a variable RF source. A time lens element includes an intensity modulation device, a phase modulation device, and a pulse compressor. The intensity modulation device carves shorter pulses from the long gain-switched seed pulses, the phase modulation device adds chirp, and the pulse compressor compensates for the chirp while producing high-power short-duration output pulses.
    Type: Application
    Filed: May 14, 2019
    Publication date: September 12, 2019
    Inventors: Juliet T. Gopinath, Robert D. Niederriter
  • Publication number: 20190265460
    Abstract: A tunable optical electrowetting element having a liquid-liquid interface shape controlled by an applied voltage. Circuitry for applying a voltage to the electrowetting element is configured to apply a shaped voltage signal comprising a first fast-rising signal combined with a second fast-rising signal. The second signal is selected to damp oscillations in the liquid-liquid interface caused by the first signal.
    Type: Application
    Filed: February 28, 2019
    Publication date: August 29, 2019
    Inventors: Juliet T. Gopinath, Victor M. Bright, Mo Zohrabi, Omkar D. Supekar, Robert H. Cormack, Wei Yang Lim
  • Publication number: 20170255003
    Abstract: Electrowetting-actuated optical shutters based on total internal reflection or beam steering. An electrowetting cell contains a conducting liquid and a non-conducting liquid configured to form a liquid-liquid interface extending to the inner walls of the cell. A beam of light is directed to the liquid-liquid interface at an angle near the total internal reflection angle of the interface. Voltage changes the shape of the liquid-liquid interface, without separating it from the inner walls of the cell. Thus, when depending on the voltage applied, the beam is either transmitted in part or substantially totally internal reflected.
    Type: Application
    Filed: March 5, 2017
    Publication date: September 7, 2017
    Inventors: Juliet T. Gopinath, Victor M. Bright, Andrew M. Jones
  • Publication number: 20170010456
    Abstract: The present disclosure relates optical imaging devices and methods useful in biological and medical imaging applications. In one embodiment, an optical imaging device includes a flexible lightguide having a first end and a second end, the output of the source of pulsed infrared radiation being optically coupled to the first end of the flexible lightguide; a lens assembly attached to and optically coupled to the second end of the flexible lightguide, the lens assembly comprising a variable-focus lens element, the a variable-focus lens element having a tunable focal length; and a photodetector coupled to the flexible lightguide to detect radiation propagating from the second end toward the first end of the flexible lightguide. The optical imaging devices and methods can be used in both confocal and multi-photon techniques.
    Type: Application
    Filed: January 22, 2015
    Publication date: January 12, 2017
    Inventors: Juliet T. Gopinath, Emily A. Gibson, Victor M. Bright, Richard Weir, Diego Restrepo