Patents by Inventor Jumpei Hayashi

Jumpei Hayashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10424721
    Abstract: A lead-free piezoelectric element that stably operates in a wide operating temperature range contains a lead-free piezoelectric material. The piezoelectric element includes a first electrode, a second electrode, and a piezoelectric material that includes a perovskite-type metal oxide represented by (Ba1-xCax)a(Ti1-yZry)O3 (1.00?a?1.01, 0.02?x?0.30, 0.020?y?0.095, and y?x) as a main component and manganese incorporated in the perovskite-type metal oxide. The manganese content relative to 100 parts by weight of the perovskite-type metal oxide is 0.02 parts by weight or more and 0.40 parts by weight or less on a metal basis.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: September 24, 2019
    Assignee: Canon Kabushiki Kaisha
    Inventors: Jumpei Hayashi, Kenichi Takeda, Shinya Koyama, Kenichi Akashi, Tatsuo Furuta
  • Patent number: 10280119
    Abstract: A barium titanate piezoelectric ceramic having good piezoelectric properties and mechanical strength and a piezoelectric element that includes the ceramic are provided. A method for making a piezoelectric ceramic includes forming a compact composed of an oxide powder containing barium titanate particles, sintering the compact, and decreasing the temperature of the compact after the sintering. The sintering includes (A) increasing the temperature of the compact to a first temperature within a temperature range of a shrinking process of the compact; (B) increasing the temperature of the compact to a second temperature within a temperature range of a liquid phase sintering process of the compact after (A); (C) decreasing the temperature of the compact to a third temperature within the temperature range of the shrinking process of the compact after (B); and (D) retaining the third temperature after (C).
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: May 7, 2019
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takanori Matsuda, Hiroshi Saito, Tatsuo Furuta, Jumpei Hayashi, Takayuki Watanabe, Toshihiro Ifuku
  • Publication number: 20190115853
    Abstract: Provided is a method of manufacturing an oscillator, including: arranging an electrode on a piezoelectric ceramics free from being subjected to polarization treatment, to thereby provide a piezoelectric element; bonding the piezoelectric element and a diaphragm to each other at a temperature T1; bonding the piezoelectric element and a power supply member to each other at a temperature T2; and subjecting the piezoelectric ceramics to polarization treatment at a temperature T3, in which the temperature T1, the temperature T2, and the temperature T3 satisfy a relationship T1>T3 and a relationship T2>T3.
    Type: Application
    Filed: March 21, 2017
    Publication date: April 18, 2019
    Inventors: Jumpei Hayashi, Kenichi Takeda, Shinya Koyama, Takayuki Watanabe, Yasushi Shimizu, Tatsuo Furuta, Miki Ueda, Akira Uebayashi, Hidenori Tanaka, Makoto Kubota
  • Patent number: 10256393
    Abstract: There is provided a lead-free piezoelectric material having a satisfactory piezoelectric constant and mechanical quality factor in the range of device operating temperatures (from ?30° C. to 50° C.). The piezoelectric material contains a main constituent containing a perovskite-type metal oxide expressed by the general formula (Ba1-xCax)a(Ti1-yZry)O3, where x, y and a satisfy the 0.030?x<0.090, 0.030?y?0.080, and 0.9860?a?1.0200. The material also contains 0.040 to 0.500 part by weight of Mn, 0.042 to 0.850 part by weight of Bi, 0 to 0.028 part by weight of Li, 0.001 to 4.000 part by weight of a third sub-constituent including at least one of Si and B, and 0.001 to 4.000 parts by weight of Cu, each in terms of element relative to 100 parts by weight of the metal oxide.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: April 9, 2019
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroshi Saito, Shunsuke Murakami, Jumpei Hayashi, Kanako Oshima, Hidenori Tanaka
  • Publication number: 20190019940
    Abstract: A piezoelectric element includes a piezoelectric material layer and an electrode layer, wherein the piezoelectric material layer and the electrode layer are stacked on top of each other, the piezoelectric material layer includes a barium titanate-based material, and two coercive fields Ec1 and Ec2 of the piezoelectric element have the same sign and satisfy (|Ec2|?|Ec1|)?8 kV/cm.
    Type: Application
    Filed: July 6, 2018
    Publication date: January 17, 2019
    Inventors: Jumpei Hayashi, Makoto Kubota, Shinya Koyama, Tatsuo Furuta, Kanako Oshima
  • Publication number: 20180351074
    Abstract: A piezoelectric element, in which a piezoelectric material layer has a plurality of crystal particles and a plurality of void portions and, in at least one of two or more of the piezoelectric material layers, when the average thickness in the lamination direction of the piezoelectric material layer is defined as TP, the average circle-equivalent diameter of the plurality of crystal particles is defined as DG, the maximum length in the lamination direction of the plurality of void portions not contacting the electrode layers is defined as LV, and the average thickness of the electrode layers contacting the at least one piezoelectric material layer is defined as TE, 0.07TP?DG?0.33TP and TE?LV?0.3TP are established and the lead content is less than 1000 ppm.
    Type: Application
    Filed: May 23, 2018
    Publication date: December 6, 2018
    Inventors: Makoto Kubota, Jumpei Hayashi, Tatsuo Furuta, Kanako Oshima, Shinya Koyama
  • Publication number: 20180316284
    Abstract: A vibrator which is constructed by bonding a piezoelectric element and an elastic body together via a bonding layer. The piezoelectric element has a piezoelectric ceramic and electrodes. The bonding layer has an unbonded region that is located close to a nodal line of a vibration in a primary out-of-plane vibration mode when the vibration is excited in the vibrator, and in the unbonded region, the piezoelectric element and the elastic body are not bonded together.
    Type: Application
    Filed: April 24, 2018
    Publication date: November 1, 2018
    Inventors: Miki Ueda, Tatsuo Furuta, Takayuki Watanabe, Shinya Koyama, Jumpei Hayashi, Makoto Kubota
  • Patent number: 10103314
    Abstract: The piezoelectric material of the present invention includes a main component composed of a perovskite-type metal oxide represented by Formula (1), at least one of Mn and Ni, and Mg. The content of Ni is 0 mol or more and 0.05 mol or less based on 1 mol of the perovskite-type metal oxide, and the content of Mn is 0 mol or more and 0.005 mol or less based on 1 mol of the perovskite-type metal oxide, provided that the content of Mn and the content of Ni are not simultaneously 0 mol. The content of Mg is 0.001 mol or more and 0.020 mol or less based on 1 mol of the perovskite-type metal oxide. Formula (1): (NaxBa1-y)(NbyTi1-y)O3 (where x is 0.83 or more and 0.95 or less, y is 0.85 or more and 0.95 or less, and x/y is 0.95 or more and 1.05 or less).
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: October 16, 2018
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kaoru Miura, Miki Ueda, Takayuki Watanabe, Shunsuke Murakami, Jumpei Hayashi, Makoto Kubota
  • Patent number: 10074796
    Abstract: The piezoelectric material of the present invention includes a main component composed of a perovskite-type metal oxide represented by Formula (1), Zn, and Mg. The content of Zn is 0.005 mol or more and 0.050 mol or less based on 1 mol of the perovskite-type metal oxide, and the content of Mg is 0.001 mol or more and 0.020 mol or less based on 1 mol of the perovskite-type metal oxide. Formula (1): (NaxBa1-y)(NbyTi1-y)O3 (where x is 0.83 or more and 0.95 or less, y is 0.85 or more and 0.95 or less, and x/y is 0.95 or more and 1.05 or less).
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: September 11, 2018
    Assignee: Canon Kabushiki Kaisha
    Inventors: Miki Ueda, Kaoru Miura, Takayuki Watanabe, Shunsuke Murakami, Jumpei Hayashi, Makoto Kubota
  • Publication number: 20180222802
    Abstract: There is provided a lead- and potassium-free piezoelectric material having a high piezoelectric constant and a satisfactory insulation property and a piezoelectric element that includes the piezoelectric material. The piezoelectric material contains a perovskite-type metal oxide having the general formula (1): (NaxBa1-y)(NbyTi1-y)O3 (wherein x satisfies 0.80?x?0.95, and y satisfies 0.85?y?0.95); and at least one rare-earth element selected from La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, wherein the rare-earth element content is more than 0 mol % and 5 mol % or less of the amount of perovskite-type metal oxide. The piezoelectric element includes the piezoelectric material.
    Type: Application
    Filed: February 21, 2018
    Publication date: August 9, 2018
    Inventors: Jumpei Hayashi, Takayuki Watanabe, Shunsuke Murakami, Miki Ueda
  • Publication number: 20180123019
    Abstract: The piezoelectric material of the present invention includes a main component composed of a perovskite-type metal oxide represented by Formula (1), at least one of Mn and Ni, and Mg. The content of Ni is 0 mol or more and 0.05 mol or less based on 1 mol of the perovskite-type metal oxide, and the content of Mn is 0 mol or more and 0.005 mol or less based on 1 mol of the perovskite-type metal oxide, provided that the content of Mn and the content of Ni are not simultaneously 0 mol. The content of Mg is 0.001 mol or more and 0.020 mol or less based on 1 mol of the perovskite-type metal oxide. Formula (1): (NaxBa1-y)(NbyTi1-y)O3 (where x is 0.83 or more and 0.95 or less, y is 0.85 or more and 0.95 or less, and x/y is 0.95 or more and 1.05 or less).
    Type: Application
    Filed: March 24, 2016
    Publication date: May 3, 2018
    Inventors: Kaoru Miura, Miki Ueda, Takayuki Watanabe, Shunsuke Murakami, Jumpei Hayashi, Makoto Kubota
  • Publication number: 20180123018
    Abstract: The piezoelectric material of the present invention includes a main component composed of a perovskite-type metal oxide represented by Formula (1), Zn, and Mg. The content of Zn is 0.005 mol or more and 0.050 mol or less based on 1 mol of the perovskite-type metal oxide, and the content of Mg is 0.001 mol or more and 0.020 mol or less based on 1 mol of the perovskite-type metal oxide. Formula (1): (NaxBa1-y)(NbyTi1-y)O3 (where x is 0.83 or more and 0.95 or less, y is 0.85 or more and 0.95 or less, and x/y is 0.95 or more and 1.05 or less).
    Type: Application
    Filed: March 24, 2016
    Publication date: May 3, 2018
    Inventors: Miki Ueda, Kaoru Miura, Takayuki Watanabe, Shunsuke Murakami, Jumpei Hayashi, Makoto Kubota
  • Patent number: 9932273
    Abstract: There is provided a lead- and potassium-free piezoelectric material having a high piezoelectric constant and a satisfactory insulation property and a piezoelectric element that includes the piezoelectric material. The piezoelectric material contains a perovskite-type metal oxide having the general formula (1): (NaxBa1-y)(NbyTi1-y)O3 (wherein x satisfies 0.80?x?0.95, and y satisfies 0.85?y?0.95); and at least one rare-earth element selected from La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, wherein the rare-earth element content is more than 0 mol % and 5 mol % or less of the amount of perovskite-type metal oxide. The piezoelectric element includes the piezoelectric material.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: April 3, 2018
    Assignee: Canon Kabushiki Kaisha
    Inventors: Jumpei Hayashi, Takayuki Watanabe, Shunsuke Murakami, Miki Ueda
  • Patent number: 9871188
    Abstract: A piezoelectric ceramic includes a perovskite-type metal oxide containing barium titanate, and Mn. When a surface thereof along the remanent polarization direction is subjected to X-ray diffraction analysis at room temperature, the ratio of the diffraction intensity of the (002) plane to the diffraction intensity of the (200) plane is 1.0 or more, the diffraction peak of the (002) plane has a half width of 1.2° or less, and the lattice constant of the c-axis thereof and the lattice constant of the a-axis thereof satisfy the relationship 1.004?c/a?1.010.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: January 16, 2018
    Assignee: Canon Kabushiki Kaisha
    Inventors: Jumpei Hayashi, Takayuki Watanabe, Akira Uebayashi, Kenichi Takeda
  • Patent number: 9842985
    Abstract: Provided are a barium titanate-based piezoelectric ceramics having satisfactory piezoelectric performance and a satisfactory mechanical quality factor (Qm), and a piezoelectric element using the same. Specifically provided are a piezoelectric ceramics, including: crystal particles; and a grain boundary between the crystal particles, in which the crystal particles each include barium titanate having a perovskite-type structure and manganese at 0.04% by mass or more and 0.20% by mass or less in terms of a metal with respect to the barium titanate, and the grain boundary includes at least one compound selected from the group consisting of Ba4Ti12O27 and Ba6Ti17O40, and a piezoelectric element using the same.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: December 12, 2017
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Tatsuya Suzuki, Masami Tsukamoto, Mikio Shimada, Toshihiro Ifuku, Takanori Matsuda, Makoto Kubota, Jumpei Hayashi
  • Patent number: 9761788
    Abstract: Provided is a lead-free piezoelectric material having satisfactory piezoelectric constant and mechanical quality factor in a device driving temperature range (?30° C. to 50° C.) The piezoelectric material includes a main component containing a perovskite-type metal oxide represented by Formula 1, a first auxiliary component composed of Mn, and a second auxiliary component composed of Bi or Bi and Li. The content of Mn is 0.040 parts by weight or more and 0.500 parts by weight or less based on 100 parts by weight of the metal oxide on a metal basis. The content of Bi is 0.042 parts by weight or more and 0.850 parts by weight or less and the content of Li is 0.028 parts by weight or less (including 0 parts by weight) based on 100 parts by weight of the metal oxide on a metal basis. (Ba1-xCax)a(Ti1-yZry)O3 . . . (1), wherein, 0.030?x<0.090, 0.030?y?0.080, and 0.9860?a?1.0200.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: September 12, 2017
    Assignee: Canon Kabushiki Kaisha
    Inventors: Shunsuke Murakami, Takanori Matsuda, Kanako Oshima, Jumpei Hayashi, Takayuki Watanabe, Hidenori Tanaka, Hiroshi Saito
  • Patent number: 9722171
    Abstract: The present invention provides a lead-free piezoelectric material having a high piezoelectric constant and a high mechanical quality factor in a wide operating temperature range. The piezoelectric material includes a perovskite-type metal oxide represented by Formula (1): (Ba1-xCax)a(Ti1-yZry)O3 (1.00?a?1.01, 0.125?x<0.155, and 0.041?y?0.074) as a main component. The metal oxide contains Mn in a content of 0.12 parts by weight or more and 0.40 parts by weight or less based on 100 parts by weight of the metal oxide on a metal basis.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: August 1, 2017
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takanori Matsuda, Tatsuo Furuta, Yasushi Shimizu, Shinya Koyama, Akira Uebayashi, Hiroshi Saito, Makoto Kubota, Kenichi Akashi, Jumpei Hayashi
  • Patent number: 9698337
    Abstract: A piezoelectric ceramic includes: a metal oxide represented by General Formula (1); and 0.04 parts by weight or more and 0.36 parts by weight or less of Mn and 0.042 parts by weight or more and 0.850 parts by weight or less of Bi on a metal basis relative to 100 parts by weight of the metal oxide, wherein the piezoelectric ceramic includes a plurality of first crystal grains having a perovskite structure, and a plurality of second crystal grains provided at a grain boundary between the first crystal grains and having a crystal structure different from that of the first crystal grain, and the second crystal grain mainly contains at least one metal oxide selected from Ba4Ti12O27 and Ba6Ti17O40. (Ba1-xCax)a(Ti1-yZry)O3??(1) (where 0.09?x?0.30, 0.025?y?0.085, 0.986?a?1.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: July 4, 2017
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kanako Oshima, Masatoshi Watanabe, Tatsuya Suzuki, Mikio Shimada, Shinya Koyama, Yasushi Shimizu, Tatsuo Furuta, Hidenori Tanaka, Makoto Kubota, Jumpei Hayashi
  • Publication number: 20170153410
    Abstract: Provided is a vibrator and an ultrasonic motor that are capable of exhibiting a sufficient drive speed even when a lead-free piezoelectric ceramics is used. The ultrasonic motor includes an annular vibrator and an annular moving member arranged so as to be brought into pressure-contact with the vibrator. The vibrator includes an annular vibrating plate and an annular piezoelectric element. The piezoelectric element includes an annular piezoelectric ceramic piece, a common electrode arranged on one surface of the piezoelectric ceramic piece, and a plurality of electrodes arranged on the other surface of the piezoelectric ceramic piece. The piezoelectric ceramic piece contains lead in a content of less than 1,000 ppm. The plurality of electrodes include two drive phase electrodes, at least one non-drive phase electrode, and at least one detection phase electrode.
    Type: Application
    Filed: November 17, 2016
    Publication date: June 1, 2017
    Inventors: Jumpei Hayashi, Akira Uebayashi, Tatsuo Furuta, Hidenori Tanaka, Shinya Koyama, Makoto Kubota
  • Publication number: 20170153531
    Abstract: Provided is an ultrasonic motor including an annular vibrator and an annular moving member that is brought into pressure-contact with the vibrator. The vibrator includes an annular vibrating plate and an annular piezoelectric element. The piezoelectric element includes an annular lead-free piezoelectric ceramic piece, a common electrode arranged on one surface of the piezoelectric ceramic piece, and a plurality of electrodes arranged on the other surface of the piezoelectric ceramic piece. The plurality of electrodes include two drive phase electrodes, one or more non-drive phase electrodes, and one or more detection phase electrodes. A second surface of the vibrating plate includes a plurality of groove regions extending radially, and the depths of the groove regions change in a circumferential direction along a curve obtained by superimposing one or more sine waves on one another. The ultrasonic motor exhibits a sufficient drive speed while suppressing generation of an unnecessary vibration wave.
    Type: Application
    Filed: November 9, 2016
    Publication date: June 1, 2017
    Inventors: Makoto Kubota, Akira Uebayashi, Tatsuo Furuta, Shinya Koyama, Jumpei Hayashi, Hidenori Tanaka