Patents by Inventor Jun Yamawaku

Jun Yamawaku has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130337635
    Abstract: A film deposition apparatus configured to perform a film deposition process on a substrate in a vacuum chamber includes a turntable configured to rotate a substrate loading area to receive the substrate, a film deposition area including at least one process gas supplying part configured to supply a process gas onto the substrate loading area and configured to form a thin film by depositing at least one of an atomic layer and a molecular layer along with a rotation of the turntable, a plasma treatment part provided away from the film deposition area in a rotational direction of the turntable and configured to treat the at least one of the atomic layer and the molecular layer for modification by plasma, and a bias electrode part provided under the turntable without contacting the turntable and configured to generate bias potential to attract ions in the plasma toward the substrate.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 19, 2013
    Inventors: Jun YAMAWAKU, Chishio KOSHIMIZU, Mitsuhiro TACHIBANA, Hitoshi KATO, Takeshi KOBAYASHI, Shigehiro MIURA, Takafumi KIMURA
  • Patent number: 8608903
    Abstract: A plasma processing apparatus includes: a processing chamber including a dielectric window; a coil-shaped RF antenna, provided outside the dielectric window; a substrate supporting unit, provided in the chamber, for mounting thereon a target substrate; a processing gas supply unit for supplying a processing gas to the chamber; and an RF power supply unit for supplying an RF power to the RF antenna to generate a plasma of the processing gas by an inductive coupling in the chamber. The apparatus further includes a correction coil, provided at a position outside the chamber where the correction coil is to be coupled with the RF antenna by an electromagnetic induction, for controlling a plasma density distribution in the chamber; and an antenna-coil distance control unit for controlling a distance between the RF antenna and the correction coil while supporting the correction coil substantially in parallel with the RF antenna.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: December 17, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Yohei Yamazawa, Chishio Koshimizu, Masashi Saito, Kazuki Denpoh, Jun Yamawaku, Hachishiro Iizuka
  • Patent number: 8593780
    Abstract: A substrate processing apparatus includes an electrostatic chuck enclosing an electrostatic electrode plate and a chamber having a ground potential and housing the electrostatic chuck. When the absolute value of the potential generated at a wafer after DC discharge is generated between the wafer and the chamber is 0.5 kV, the potential of the electrostatic electrode plate is changed from 2.5 kV to 1.5 kV to generate DC discharge so that the absolute value of the potential of a placing surface of the wafer of the electrostatic chuck becomes 0.5 kV after the plasma etching process, the polarities of the potential of the placing surface after the change and the wafer become the same, and the absolute value of the potential difference between the wafer and the chamber becomes 0.5 kV or more. The wafer is then removed from the electrostatic chuck.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: November 26, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Jun Yamawaku, Yohei Yamazawa
  • Publication number: 20130308681
    Abstract: A component in a processing chamber of a substrate processing apparatus, where a temperature may be accurately measured by using a temperature measuring apparatus using an interference of a low-coherence light, even when a front surface and a rear surface are not parallel due to abrasion, or the like. A focus ring used in a vacuum atmosphere and of which a temperature is measured includes an abrasive surface exposed to an abrasive atmosphere according to plasma, a nonabrasive surface not exposed to the abrasive atmosphere, a thin-walled portion including a top surface and a bottom surface that are parallel to each other, and a coating member coating the top surface of the thin-walled portion, wherein a mirror-like finishing is performed on each of the top and bottom surfaces of the thin-walled portion.
    Type: Application
    Filed: July 30, 2013
    Publication date: November 21, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Jun YAMAWAKU, Chishio KOSHIMIZU, Tatsuo MATSUDO
  • Patent number: 8585831
    Abstract: There is provided a substrate cleaning method capable of cleaning a substrate on which a fine pattern is being formed in a short time with a simple configuration without having a harmful influence on the fine pattern. In the method, the substrate is transferred from a processing chamber for performing a process on the surface of the substrate therein to a cleaning chamber for cleaning the substrate therein. The substrate is cooled to a temperature in the cleaning chamber. A superfluid is supplied to the surface of the substrate, and contaminant components in the fine pattern are flowed out along with the superfluid as the superfluid flows over from the surface of the substrate.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: November 19, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Hidefumi Matsui, Tsuyoshi Moriya, Eiichi Nishimura, Shinichi Kawaguchi, Jun Yamawaku, Kunio Miyauchi
  • Publication number: 20130299455
    Abstract: There are provided a method of heating a focus ring and a plasma etching apparatus, capable of simplifying a structure of a heating mechanism without a dummy substrate. The plasma etching apparatus includes a vacuum processing chamber; a lower electrode serving as a mounting table for mounting a substrate thereon; an upper electrode provided to face the lower electrode; a gas supply unit for supplying a processing gas; a high frequency power supply for supplying a high frequency power to the lower electrode to generate a plasma of the processing gas; and a focus ring provided on the lower electrode to surround a periphery of the substrate. In the plasma etching apparatus, the focus ring is heated by irradiating a heating light thereto from a light source provided outside the vacuum processing chamber.
    Type: Application
    Filed: July 15, 2013
    Publication date: November 14, 2013
    Inventors: Chishio KOSHIMIZU, Jun YAMAWAKU, Tatsuo MATSUDO, Masashi SAITO
  • Patent number: 8523428
    Abstract: A component in a processing chamber of a substrate processing apparatus, where a temperature may be accurately measured by using a temperature measuring apparatus using an interference of a low-coherence light, even when a front surface and a rear surface are not parallel due to abrasion, or the like. A focus ring used in a vacuum atmosphere and of which a temperature is measured includes an abrasive surface exposed to an abrasive atmosphere according to plasma, a nonabrasive surface not exposed to the abrasive atmosphere, a thin-walled portion including a top surface and a bottom surface that are parallel to each other, and a coating member coating the top surface of the thin-walled portion, wherein a mirror-like finishing is performed on each of the top and bottom surfaces of the thin-walled portion.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: September 3, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Jun Yamawaku, Chishio Koshimizu, Tatsuo Matsudo
  • Patent number: 8516715
    Abstract: An evacuation method which can reduce evacuation time without causing moisture-related problems. In a vacuum processing apparatus including a vacuum processing chamber, during the evacuation for the vacuum processing chamber, the pressure in the vacuum processing chamber is maintained at a pressure lower than or equal to the atmospheric pressure but higher than or equal to 6.7×102 Pa (5 Torr).
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: August 27, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Jun Yamawaku, Tsuyoshi Moriya, Hideaki Yakushiji, Kazumasa Abe
  • Patent number: 8486221
    Abstract: There are provided a method of heating a focus ring and a plasma etching apparatus, capable of simplifying a structure of a heating mechanism without a dummy substrate. The plasma etching apparatus includes a vacuum processing chamber; a lower electrode serving as a mounting table for mounting a substrate thereon; an upper electrode provided to face the lower electrode; a gas supply unit for supplying a processing gas; a high frequency power supply for supplying a high frequency power to the lower electrode to generate a plasma of the processing gas; and a focus ring provided on the lower electrode to surround a periphery of the substrate. In the plasma etching apparatus, the focus ring is heated by irradiating a heating light thereto from a light source provided outside the vacuum processing chamber.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: July 16, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Chishio Koshimizu, Jun Yamawaku, Tatsuo Matsudo, Masashi Saito
  • Patent number: 8409328
    Abstract: A substrate transfer device includes an atmosphere introduction unit and an atmosphere exhaust unit provided at a top and a bottom portion of a main body of the device, respectively; and a substrate transfer mechanism provided between the atmosphere introduction unit and the atmosphere exhaust unit. The substrate transfer device further includes a downward flow forming unit provided, adjacent to the atmosphere introduction unit, to allow an atmosphere to be introduced through the atmosphere introduction unit and to downwardly flow through the substrate transfer mechanism and be exhausted through the atmosphere exhaust unit; and a gas ionizing unit for ionizing the atmosphere and a particle collecting unit for collecting particles included in the atmosphere, the gas ionizing unit and the particle collecting unit being sequentially provided in the direction in which the atmosphere downwardly flows, between the downward flow forming unit and the substrate transfer mechanism.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: April 2, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Jun Yamawaku, Junji Oikawa, Hiroyuki Nakayama
  • Patent number: 8398745
    Abstract: A substrate processing apparatus includes a processing chamber for accommodating therein a processing target substrate; a gas exhaust path through which a gas inside the processing chamber is exhausted; one or more exhaust pumps provided in the gas exhaust path; and a scrubber for collecting harmful components from an exhaust gas. The apparatus further includes an ionized gas supply unit for supplying to the gas exhaust path an ionized gas for neutralizing charged particles included in the exhaust gas flowing therethrough.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: March 19, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Jun Yamawaku, Junji Oikawa, Hiroyuki Nakayama
  • Patent number: 8384902
    Abstract: A gas flow cell for an optical gas-analysis system, including a cylindrical cell body; and a single sample-gas introduction port configured to introduce sample-gas. The single sample-gas introduction port is provided at a location at a substantial center of the cell body with respect to a long axis direction of the cell body, and the single sample-gas introduction port is aligned along a direction orthogonal to the long axis direction so that the cylindrical cell body and the single sample-gas introduction port together form a shape of a character T.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: February 26, 2013
    Assignees: Shimadzu Corporation, Tokyo Electron Limited
    Inventors: Osamu Akiyama, Tsuyoshi Moriya, Jun Yamawaku
  • Patent number: 8297292
    Abstract: Provided are a cleaning device and a cleaning method of a semiconductor manufacturing apparatus, capable of performing a cleaning process more effectively as compared to conventional cases and obtaining a high cleaning effect. A semiconductor manufacturing apparatus cleaning device 100 includes a pure water steam generating vessel 2 for generating pure water steam from pure water; a supply port 5 for supplying the pure water steam to a cleaning target portion; a supply line 4 for connecting the pure water steam generating vessel with the supply port; a collection port 6 for collecting steam used in cleaning from the cleaning target portion; a collection vessel 8 for condensing and collecting the used steam; and a collection line 7 for connecting the collection port 6 with the collection vessel 8.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: October 30, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Takayuki Kokubo, Jun Yamawaku, Tsuyoshi Moriya
  • Publication number: 20120250214
    Abstract: A substrate processing apparatus includes an electrostatic chuck enclosing an electrostatic electrode plate and a chamber having a ground potential and housing the electrostatic chuck. When the absolute value of the potential generated at a wafer after DC discharge is generated between the wafer and the chamber is 0.5 kV, the potential of the electrostatic electrode plate is changed from 2.5 kV to 1.5 kV to generate DC discharge so that the absolute value of the potential of a placing surface of the wafer of the electrostatic chuck becomes 0.5 kV after the plasma etching process, the polarities of the potential of the placing surface after the change and the wafer become the same, and the absolute value of the potential difference between the wafer and the chamber becomes 0.5 kV or more. The wafer is then removed from the electrostatic chuck.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 4, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Jun YAMAWAKU, Yohei YAMAZAWA
  • Publication number: 20120251759
    Abstract: A component in a processing chamber of a substrate processing apparatus, where a temperature may be accurately measured by using a temperature measuring apparatus using an interference of a low-coherence light, even when a front surface and a rear surface are not parallel due to abrasion, or the like. A focus ring used in a vacuum atmosphere and of which a temperature is measured includes an abrasive surface exposed to an abrasive atmosphere according to plasma, a nonabrasive surface not exposed to the abrasive atmosphere, a thin-walled portion including a top surface and a bottom surface that are parallel to each other, and a coating member coating the top surface of the thin-walled portion, wherein a mirror-like finishing is performed on each of the top and bottom surfaces of the thin-walled portion.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 4, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Jun YAMAWAKU, Chishio KOSHIMIZU, Tatsuo MATSUDO
  • Publication number: 20120250213
    Abstract: A substrate processing apparatus includes an electrostatic chuck enclosing an electrostatic electrode plate and a chamber having a ground potential and housing the electrostatic chuck. DC discharge is generated between a wafer and the chamber by setting the potential of the electrostatic electrode plate of the electrostatic chuck which is maintained at a first predetermined potential during a plasma etching process to a ground potential after the plasma etching process to increase the absolute value of the potential difference between the wafer and the chamber. DC discharge is then re-generated by applying, to the electrostatic electrode plate, DC voltage having the same potential as a second predetermined potential which is generated at the wafer after the DC discharge is generated, and by increasing the absolute value of the potential difference between the wafer and the chamber. The wafer is then easily removed from the electrostatic chuck.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 4, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Jun YAMAWAKU, Yohei YAMAZAWA
  • Publication number: 20120247954
    Abstract: Disclosed is a capacitively-coupled plasma etching apparatus, in which a focus ring is provided surrounding a substrate placing area of a placing table for adjusting a state of plasma. A ring type insulating member is installed along the focus ring between the top surface of the placing table and the bottom surface of the focus ring, and a heat transfer member is installed between the top surface of the placing table and the bottom surface of the focus ring to be closely attached to the top surface and the bottom surface at a position adjacent to the insulating member in a diameter direction of a wafer. During the plasma processing, the heat in the focus ring is transferred to the placing table through the heat transfer member to be cooled down and the amount of sediment attached to the rear surface of the wafer can be reduced.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 4, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Jun YAMAWAKU, Chishio KOSHIMIZU
  • Publication number: 20120241092
    Abstract: In the plasma processing apparatus 10, a processing space S is formed between a susceptor 12 and an upper electrode 13 facing the susceptor 12. The plasma processing apparatus 10 includes a magnetic field generating unit provided at a side of the upper electrode 13 opposite to the processing space S. The magnetic field generating unit includes a magnetic force line generating unit 27 having a pair of annular magnet rows 27a and 27b. The annular magnet rows 27a and 27b are provided at the side of the upper electrode 13 opposite to the processing space S and arranged concentrically when viewed from the top. In the magnetic force line generating unit 27, an angle ?1 formed by axial lines of magnets of the annular magnet rows 27a and 27b is set to be in a range of about 0°<?1?180°.
    Type: Application
    Filed: March 23, 2012
    Publication date: September 27, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Jun Yamawaku, Takafumi Kimura, Chishio Koshimizu
  • Patent number: 8257498
    Abstract: A substrate transfer module that can prevent corrosion of components, adhesion of particles to the substrate, and increases in the manufacturing cost and the size of the substrate transfer module. A substrate transfer module is connected to a substrate processing module. The substrate processing module implements desired processing on a substrate. A substrate transfer device transfers a substrate and includes a holding unit and a moving unit. The holding unit holds the substrate, and the moving unit moves the holding unit. A transfer chamber houses the substrate transfer device in an interior thereof that is isolated from an external atmosphere. An isolation device isolates at least the holding unit and the substrate held by the holding unit from an interior atmosphere of the transfer chamber.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: September 4, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Jun Yamawaku, Tsuyoshi Moriya
  • Patent number: 8253930
    Abstract: This absorption spectrometric apparatus for semiconductor production process includes a flow passageway switching mechanism connected to a discharging flow passageway of a processing chamber for a semiconductor production process and a multiple reflection type moisture concentration measuring absorption spectrometric analyzer that allows a laser beam from a laser light source to undergo multiple reflection within a cell, detects a light absorbancy change by a gas within the cell, and measures a moisture concentration within the gas. The flow passageway switching mechanism connects the discharging flow passageway by switching between a measuring flow passageway through which the gas is discharged by passing through the cell and a bypass flow passageway through which the gas is discharged without passing through the cell.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: August 28, 2012
    Assignees: Shimadzu Corporation, Tokyo Electron Limited
    Inventors: Osamu Akiyama, Masashi Akimoto, Tsuyoshi Moriya, Jun Yamawaku