Patents by Inventor Jun-Ichi Nakano

Jun-Ichi Nakano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6949394
    Abstract: An optical semiconductor device includes an optical semiconductor element, a semiconductor region, and a buried layer. The optical semiconductor element is formed on a semiconductor substrate. The semiconductor region opposes the optical semiconductor element and essentially surrounds the optical semiconductor element to form walls. The buried layer is arranged between the walls of the semiconductor region and the optical semiconductor element and formed by vapor phase epitaxy. In this optical semiconductor device, a distance between the wall of the semiconductor region and a side wall of the optical semiconductor element is larger in a portion in which the growth rate of the vapor phase epitaxy in a horizontal direction from the side wall of the optical semiconductor element and the wall of the semiconductor region is higher.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: September 27, 2005
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Fumihiko Kobayashi, Take Miyazawa, Hidefumi Mori, Jun-ichi Nakano
  • Patent number: 6790697
    Abstract: An optical semiconductor device includes an optical semiconductor element, a semiconductor region, and a buried layer. The optical semiconductor element is formed on a semiconductor substrate. The semiconductor region opposes the optical semiconductor element and essentially surrounds the optical semiconductor element to form walls. The buried layer is arranged between the walls of the semiconductor region and the optical semiconductor element and formed by vapor phase epitaxy. In this optical semiconductor device, a distance between the wall of the semiconductor region and a side wall of the optical semiconductor element is larger in a portion in which the growth rate of the vapor phase epitaxy in a horizontal direction from the side wall of the optical semiconductor element and the wall of the semiconductor region is higher.
    Type: Grant
    Filed: February 4, 2002
    Date of Patent: September 14, 2004
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Fumihiko Kobayashi, Takeo Miyazawa, Hidefumi Mori, Jun-ichi Nakano
  • Publication number: 20040038434
    Abstract: An optical semiconductor device includes an optical semiconductor element, a semiconductor region, and a buried layer. The optical semiconductor element is formed on a semiconductor substrate. The semiconductor region opposes the optical semiconductor element and essentially surrounds the optical semiconductor element to form walls. The buried layer is arranged between the walls of the semiconductor region and the optical semiconductor element and formed by vapor phase epitaxy. In this optical semiconductor device, a distance between the wall of the semiconductor region and a side wall of the optical semiconductor element is larger in a portion in which the growth rate of the vapor phase epitaxy in a horizontal direction from the side wall of the optical semiconductor element and the wall of the semiconductor region is higher.
    Type: Application
    Filed: August 20, 2003
    Publication date: February 26, 2004
    Inventors: Fumihiko Kobayashi, Take Miyazawa, Hidefumi Mori, Jun-ichi Nakano
  • Publication number: 20020094598
    Abstract: An optical semiconductor device includes an optical semiconductor element, a semiconductor region, and a buried layer. The optical semiconductor element is formed on a semiconductor substrate. The semiconductor region opposes the optical semiconductor element and essentially surrounds the optical semiconductor element to form walls. The buried layer is arranged between the walls of the semiconductor region and the optical semiconductor element and formed by vapor phase epitaxy. In this optical semiconductor device, a distance between the wall of the semiconductor region and a side wall of the optical semiconductor element is larger in a portion in which the growth rate of the vapor phase epitaxy in a horizontal direction from the side wall of the optical semiconductor element and the wall of the semiconductor region is higher.
    Type: Application
    Filed: February 4, 2002
    Publication date: July 18, 2002
    Inventors: Fumihiko Kobayashi, Takeo Miyazawa, Hidefumi Mori, Jun-Ichi Nakano
  • Patent number: 6403986
    Abstract: An optical semiconductor device includes an optical semiconductor element, a semiconductor region, and a buried layer. The optical semiconductor element is formed on a semiconductor substrate. The semiconductor region opposes the optical semiconductor element and essentially surrounds the optical semiconductor element to form walls. The buried layer is arranged between the walls of the semiconductor region and the optical semiconductor element and formed by vapor phase epitaxy. In this optical semiconductor device, a distance between the wall of the semiconductor region and a side wall of the optical semiconductor element is larger in a portion in which the growth rate of the vapor phase epitaxy in a horizontal direction from the side wall of the optical semiconductor element and the wall of the semiconductor region is higher.
    Type: Grant
    Filed: February 18, 1998
    Date of Patent: June 11, 2002
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Fumihiko Kobayashi, Takeo Miyazawa, Hidefumi Mori, Jun-ichi Nakano
  • Patent number: 5783844
    Abstract: An optical semiconductor device includes an optical semiconductor element, a semiconductor region, and a buried layer. The optical semiconductor element is formed on a semiconductor substrate. The semiconductor region opposes the optical semiconductor element and essentially surrounds the optical semiconductor element to form walls. The buried layer is arranged between the walls of the semiconductor region and the optical semiconductor element and formed by vapor phase epitaxy. In this optical semiconductor device, a distance between the wall of the semiconductor region and a side wall of the optical semiconductor element is larger in a portion in which the growth rate of the vapor phase epitaxy in a horizontal direction from the side wall of the optical semiconductor element and the wall of the semiconductor region is higher.
    Type: Grant
    Filed: September 27, 1995
    Date of Patent: July 21, 1998
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Fumihiko Kobayashi, Takeo Miyazawa, Hidefumi Mori, Jun-ichi Nakano
  • Patent number: 4000247
    Abstract: A single crystal essentially consists of XM.sub.z M'.sub.1.sub.-z P.sub.4 O.sub.12, (0<z.ltoreq.1) in which X is lithium and/or sodium, M is neodymium, and M' is yttrium, lanthanum or gadolinium.Said single crystal can be used as a dielectric active medium for lasers, and can be prepared in the form of a bar having a square cross section measuring 5 mm on each side by the top-seeded solution growth method.
    Type: Grant
    Filed: February 23, 1976
    Date of Patent: December 28, 1976
    Assignee: Nippon Telegraph and Telephone Public Corporation
    Inventors: Tomoaki Yamada, Kenju Otsuka, Harue Suzuki, Jun-Ichi Nakano