Patents by Inventor Junya Maruyama

Junya Maruyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9123595
    Abstract: The object of the invention is to provide a method for fabricating a semiconductor device having a peeled layer bonded to a base material with curvature. Particularly, the object is to provide a method for fabricating a display with curvature, more specifically, a light emitting device having an OLED bonded to a base material with curvature. An external force is applied to a support originally having curvature and elasticity, and the support is bonded to a peeled layer formed over a substrate. Then, when the substrate is peeled, the support returns into the original shape by the restoring force, and the peeled layer as well is curved along the shape of the support. Finally, a transfer object originally having curvature is bonded to the peeled layer, and then a device with a desired curvature is completed.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: September 1, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masakazu Murakami, Toru Takayama, Junya Maruyama
  • Patent number: 9112067
    Abstract: An object relates to an electrode of a semiconductor device or a method for manufacturing a semiconductor device, which includes a bonding step, and problems are: (1) high resistance of a semiconductor device due to the use of an Al electrode, (2) formation of an alloy by Al and Si, (3) high resistance of a film formed by a sputtering method, and (4) defective bonding in a bonding step which is caused if a bonding surface has a large unevenness. A semiconductor device includes a metal substrate or a substrate provided with a metal film, a copper (Cu) plating film over and bonded to the metal substrate or the metal film by employing a thermocompression bonding method, a barrier film over the Cu plating film, a single crystal silicon film over the barrier film, and an electrode layer over the single crystal silicon film.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: August 18, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Teruyuki Fujii, Kohei Ohshima, Junya Maruyama, Akihisa Shimomura
  • Patent number: 9093324
    Abstract: It is an object of the present invention to provide a semiconductor device capable of preventing deterioration due to penetration of moisture or oxygen, for example, a light-emitting apparatus having an organic light-emitting device that is formed over a plastic substrate, and a liquid crystal display apparatus using a plastic substrate. According to the present invention, devices formed on a glass substrate or a quartz substrate (a TFT, a light-emitting device having an organic compound, a liquid crystal device, a memory device, a thin-film diode, a pin-junction silicon photoelectric converter, a silicon resistance element, or the like) are separated from the substrate, and transferred to a plastic substrate having high thermal conductivity.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: July 28, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toru Takayama, Junya Maruyama, Yumiko Ohno
  • Publication number: 20150194566
    Abstract: The present invention provides a simplifying method for a peeling process as well as peeling and transcribing to a large-size substrate uniformly. A feature of the present invention is to peel a first adhesive and to cure a second adhesive at the same time in a peeling process, thereby to simplify a manufacturing process. In addition, the present invention is to devise the timing of transcribing a peel-off layer in which up to an electrode of a semiconductor are formed to a predetermined substrate. In particular, a feature is that peeling is performed by using a pressure difference in the case that peeling is performed with a state in which plural semiconductor elements are formed on a large-size substrate.
    Type: Application
    Filed: March 19, 2015
    Publication date: July 9, 2015
    Inventors: Shunpei YAMAZAKI, Toru TAKAYAMA, Junya MARUYAMA, Yuugo GOTO, Yumiko OHNO
  • Publication number: 20150179813
    Abstract: It is an object to provide a method of manufacturing a crystalline silicon device and a semiconductor device in which formation of cracks in a substrate, a base protective film, and a crystalline silicon film can be suppressed. First, a layer including a semiconductor film is formed over a substrate, and is heated. A thermal expansion coefficient of the substrate is 6×10?7/° C. to 38×10?7/° C., preferably 6×10?7/° C. to 31.8×10?7/° C. Next, the layer including the semiconductor film is irradiated with a laser beam to crystallize the semiconductor film so as to form a crystalline semiconductor film. Total stress of the layer including the semiconductor film is ?500 N/m to +50 N/m, preferably ?150 N/m to 0 N/m after the heating step.
    Type: Application
    Filed: March 3, 2015
    Publication date: June 25, 2015
    Inventors: Akihisa SHIMOMURA, Hidekazu MIYAIRI, Fumito ISAKA, Yasuhiro JINBO, Junya MARUYAMA
  • Publication number: 20150162562
    Abstract: In a display device using an organic light emitting diode (OLED), the occurrence of a dark spot and peeling of a cathode due to moisture are suppressed. An outer edge portion of a sealing substrate (second substrate) (102) is made to have a convex shape and a gap between the sealing substrate and an element substrate are controlled by means of this convex region. Thus, since it is not required that a layer (106) having adhesion for bonding together the sealing substrate and the element substrate has a function for controlling the gap, the thickness of the layer can be minimized. Therefore, the amount of moisture which is transmitted through the layer (having adhesion) made of an organic material and penetrated in a sealed region can be reduced.
    Type: Application
    Filed: February 19, 2015
    Publication date: June 11, 2015
    Inventors: Junya Maruyama, Shunpei Yamazaki
  • Patent number: 9013650
    Abstract: The present invention provides a simplifying method for a peeling process as well as peeling and transcribing to a large-size substrate uniformly. A feature of the present invention is to peel a first adhesive and to cure a second adhesive at the same time in a peeling process, thereby to simplify a manufacturing process. In addition, the present invention is to devise the timing of transcribing a peel-off layer in which up to an electrode of a semiconductor are formed to a predetermined substrate. In particular, a feature is that peeling is performed by using a pressure difference in the case that peeling is performed with a state in which plural semiconductor elements are formed on a large-size substrate.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: April 21, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toru Takayama, Junya Maruyama, Yuugo Goto, Yumiko Ohno
  • Patent number: 8980700
    Abstract: A semiconductor device having a semiconductor element (a thin film transistor, a thin film diode, a photoelectric conversion element of silicon PIN junction, or a silicon resistor element) which is light-weight, flexible (bendable), and thin as a whole is provided as well as a method of manufacturing the semiconductor device. In the present invention, the element is not formed on a plastic film. Instead, a flat board such as a substrate is used as a form, the space between the substrate (third substrate (17)) and a layer including the element (peeled layer (13)) is filled with coagulant (typically an adhesive) that serves as a second bonding member (16), and the substrate used as a form (third substrate (17)) is peeled off after the adhesive is coagulated to hold the layer including the element (peeled layer (13)) by the coagulated adhesive (second bonding member (16)) alone. In this way, the present invention achieves thinning of the film and reduction in weight.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: March 17, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junya Maruyama, Toru Takayama, Yuugo Goto
  • Patent number: 8981379
    Abstract: It is an object to provide a method of manufacturing a crystalline silicon device and a semiconductor device in which formation of cracks in a substrate, a base protective film, and a crystalline silicon film can be suppressed. First, a layer including a semiconductor film is formed over a substrate, and is heated. A thermal expansion coefficient of the substrate is 6×10?7/° C. to 38×10?7/° C., preferably 6×10?7/° C. to 31.8×10?7/° C. Next, the layer including the semiconductor film is irradiated with a laser beam to crystallize the semiconductor film so as to form a crystalline semiconductor film. Total stress of the layer including the semiconductor film is ?500 N/m to +50 N/m, preferably ?150 N/m to 0 N/m after the heating step.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: March 17, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Hidekazu Miyairi, Fumito Isaka, Yasuhiro Jinbo, Junya Maruyama
  • Publication number: 20150034936
    Abstract: To provide a bright and highly reliable light-emitting device. An anode (102), an EL layer (103), a cathode (104), and an auxiliary electrode (105) are formed sequentially in lamination on a reflecting electrode (101). Further, the anode (102), the cathode (104), and the auxiliary electrode (105) are either transparent or semi-transparent with respect to visible radiation. In such a structure, lights generated in the EL layer (103) are almost all irradiated to the side of the cathode (104), whereby an effect light emitting area of a pixel is drastically enhanced.
    Type: Application
    Filed: August 15, 2014
    Publication date: February 5, 2015
    Inventors: Takeshi Fukunaga, Junya Maruyama
  • Patent number: 8945331
    Abstract: An object of the present invention is to provide a method of transferring an object to be peeled onto a transferring member in a short time without imparting damage to the object to be peeled within a laminate. Also, another object of the present invention is to provide a method of manufacturing a semiconductor device in which a semiconductor element manufactured on a substrate is transferred onto a transferring member, typically, a plastic substrate. The methods are characterized by including: forming a peeling layer and an object to be peeled on a substrate; bonding the object to be peeled and a support through a two-sided tape; peeling the object to be peeled from the peeling layer by using a physical method, and then bonding the object to be peeled onto a transferring member; and peeling the support and the two-sided tape from the object to be peeled.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: February 3, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toru Takayama, Yuugo Goto, Junya Maruyama, Yumiko Ohno
  • Patent number: 8900970
    Abstract: A technique for peeling an element manufactured through a process at relatively low temperature (lower than 500° C.) from a substrate and transferring the element to a flexible substrate (typically, a plastic film). With the use of an existing manufacturing device for a large glass substrate, a molybdenum film (Mo film) is formed over a glass substrate, an oxide film is formed over the molybdenum film, and an element is formed over the oxide film through a process at relatively low temperature (lower than 500° C.). Then, the element is peeled from the glass substrate and transferred to a flexible substrate.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: December 2, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junya Maruyama, Yasuhiro Jinbo, Hironobu Shoji, Hideaki Kuwabara, Shunpei Yamazaki
  • Publication number: 20140347490
    Abstract: To provide a semiconductor device in which a layer to be peeled is attached to a base having a curved surface, and a method of manufacturing the same, and more particularly, a display having a curved surface, and more specifically a light-emitting device having a light emitting element attached to a base with a curved surface. A layer to be peeled, which contains a light emitting element furnished to a substrate using a laminate of a first material layer which is a metallic layer or nitride layer, and a second material layer which is an oxide layer, is transferred onto a film, and then the film and the layer to be peeled are curved, to thereby produce a display having a curved surface.
    Type: Application
    Filed: August 12, 2014
    Publication date: November 27, 2014
    Inventors: Toru TAKAYAMA, Junya MARUYAMA, Yuugo GOTO, Hideaki KUWABARA, Shunpei YAMAZAKI
  • Publication number: 20140339564
    Abstract: The present invention provides a simplifying method for a peeling process as well as peeling and transcribing to a large-size substrate uniformly. A feature of the present invention is to peel a first adhesive and to cure a second adhesive at the same time in a peeling process, thereby to simplify a manufacturing process. In addition, the present invention is to devise the timing of transcribing a peel-off layer in which up to an electrode of a semiconductor are formed to a predetermined substrate. In particular, a feature is that peeling is performed by using a pressure difference in the case that peeling is performed with a state in which plural semiconductor elements are formed on a large-size substrate.
    Type: Application
    Filed: August 4, 2014
    Publication date: November 20, 2014
    Inventors: Shunpei YAMAZAKI, Toru TAKAYAMA, Junya MARUYAMA, Yuugo GOTO, Yumiko OHNO
  • Publication number: 20140264351
    Abstract: There is provided a peeling method capable of preventing a damage to a layer to be peeled. Thus, not only a layer to be peeled having a small area but also a layer to be peeled having a large area can be peeled over the entire surface at a high yield. Processing for partially reducing contact property between a first material layer (11) and a second material layer (12) (laser light irradiation, pressure application, or the like) is performed before peeling, and then peeling is conducted by physical means. Therefore, sufficient separation can be easily conducted in an inner portion of the second material layer (12) or an interface thereof.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toru Takayama, Junya Maruyama, Shunpei Yamazaki
  • Publication number: 20140252337
    Abstract: Failure light emission of an EL element due to failure film formation of an organic EL material in an electrode hole 46 is improved. By forming the organic EL material after embedding an insulator in an electrode hole 46 on a pixel electrode and forming a protective portion 41b, failure film formation in the electrode hole 46 can be prevented. This can prevent concentration of electric current due to a short circuit between a cathode and an anode of the EL element, and can prevent failure light emission of an EL layer.
    Type: Application
    Filed: May 22, 2014
    Publication date: September 11, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshimitsu Konuma, Junya Maruyama
  • Patent number: 8830413
    Abstract: The present invention provides a simplifying method for a peeling process as well as peeling and transcribing to a large-size substrate uniformly. A feature of the present invention is to peel a first adhesive and to cure a second adhesive at the same time in a peeling process, thereby to simplify a manufacturing process. In addition, the present invention is to devise the timing of transcribing a peel-off layer in which up to an electrode of a semiconductor are formed to a predetermined substrate. In particular, a feature is that peeling is performed by using a pressure difference in the case that peeling is performed with a state in which plural semiconductor elements are formed on a large-size substrate.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: September 9, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toru Takayama, Junya Maruyama, Yuugo Goto, Yumiko Ohno
  • Patent number: 8810130
    Abstract: To provide a bright and highly reliable light-emitting device. An anode (102), an EL layer (103), a cathode (104), and an auxiliary electrode (105) are formed sequentially in lamination on a reflecting electrode (101). Further, the anode (102), the cathode (104), and the auxiliary electrode (105) are either transparent or semi-transparent with respect to visible radiation. In such a structure, lights generated in the EL layer (103) are almost all irradiated to the side of the cathode (104), whereby an effect light emitting area of a pixel is drastically enhanced.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: August 19, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takeshi Fukunaga, Junya Maruyama
  • Patent number: 8790994
    Abstract: It is an object of the present invention to reduce the cost of a wireless chip, further, to reduce the cost of a wireless chip by enabling the mass production of a wireless chip, and furthermore, to provide a downsized and lightweight wireless chip. A wireless chip in which a thin film integrated circuit peeled from a glass substrate or a quartz substrate is formed between a first base material and a second base material is provided according to the invention. As compared with a wireless chip formed from a silicon substrate, the wireless chip according to the invention realizes downsizing, thinness, and lightweight. The thin film integrated circuit included in the wireless chip according to the invention at least has an n-type thin film transistor having an LDD (Lightly Doped Drain) structure, a p-type thin film transistor having a single drain structure, and a conductive layer functioning as an antenna.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: July 29, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koji Dairiki, Junya Maruyama, Tomoko Tamura, Eiji Sugiyama, Yoshitaka Dozen
  • Publication number: 20140203415
    Abstract: A substrate and a delamination film are separated by a physical means, or a mechanical means in a state where a metal film formed over a substrate, and a delamination layer comprising an oxide film including the metal and a film comprising silicon, which is formed over the metal film, are provided. Specifically, a TFT obtained by forming an oxide layer including the metal over a metal film; crystallizing the oxide layer by heat treatment; and performing delamination in a layer of the oxide layer or at both of the interface of the oxide layer is formed.
    Type: Application
    Filed: March 24, 2014
    Publication date: July 24, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junya MARUYAMA, Toru TAKAYAMA, Yumiko OHNO, Shunpei YAMAZAKI