Patents by Inventor Justin G. Chen

Justin G. Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10997329
    Abstract: Structural health monitoring (SHM) is essential but can be expensive to perform. In an embodiment, a method includes sensing vibrations at a plurality of locations of a structure by a plurality of time-synchronized sensors. The method further includes determining a first set of dependencies of all sensors of the time-synchronized sensors at a first sample time to any sensors of a second sample time, and determining a second set of dependencies of all sensors of the time-synchronized sensors at the second sample time to any sensors of a third sample time. The second sample time is later than the first sample time, and the third sample time is later than the second sample time. The method then determines whether the structure has changed if the first set of dependencies is different from the second set of dependencies. Therefore, automated SHM can ensure safety at a lower cost to building owners.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: May 4, 2021
    Assignees: Massachusetts Institute of Technology, Shell Oil Company
    Inventors: William T. Freeman, Oral Buyukozturk, John W. Fisher, III, Frederic Durand, Hossein Mobahi, Neal Wadhwa, Zoran Dzunic, Justin G. Chen, James Long, Reza Mohammadi Ghazi, Theodericus Johannes Henricus Smit, Sergio Daniel Kapusta
  • Patent number: 10380745
    Abstract: A method and corresponding apparatus for measuring object motion using camera images may include measuring a global optical flow field of a scene. The scene may include target and reference objects captured in an image sequence. Motion of a camera used to capture the image sequence may be determined relative to the scene by measuring an apparent, sub-pixel motion of the reference object with respect to an imaging plane of the camera. Motion of the target object corrected for the camera motion may be calculated based on the optical flow field of the scene and on the apparent, sub-pixel motion of the reference object with respect to the imaging plane of the camera. Embodiments may enable measuring vibration of structures and objects from long distance in relatively uncontrolled settings, with or without accelerometers, with high signal-to-noise ratios.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: August 13, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Oral Buyukozturk, William T. Freeman, Frederic Durand, Myers Abraham Davis, Neal Wadhwa, Justin G. Chen
  • Patent number: 10354397
    Abstract: Embodiments can be used to synthesize physically plausible animations of target objects responding to new, previously unseen forces. Knowledge of scene geometry or target material properties is not required, and a basis set for creating realistic synthesized motions can be developed using only input video of the target object. Embodiments can enable new animation and video production techniques.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: July 16, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Myers Abraham Davis, Frederic Durand, Justin G. Chen
  • Publication number: 20190035086
    Abstract: A method and corresponding apparatus for measuring object motion using camera images may include measuring a global optical flow field of a scene. The scene may include target and reference objects captured in an image sequence. Motion of a camera used to capture the image sequence may be determined relative to the scene by measuring an apparent, sub-pixel motion of the reference object with respect to an imaging plane of the camera. Motion of the target object corrected for the camera motion may be calculated based on the optical flow field of the scene and on the apparent, sub-pixel motion of the reference object with respect to the imaging plane of the camera. Embodiments may enable measuring vibration of structures and objects from long distance in relatively uncontrolled settings, with or without accelerometers, with high signal-to-noise ratios.
    Type: Application
    Filed: February 28, 2017
    Publication date: January 31, 2019
    Inventors: Oral Buyukozturk, William T. Freeman, Frederic Durand, Myers Abraham Davis, Neal Wadhwa, Justin G. Chen
  • Publication number: 20180061063
    Abstract: A method and corresponding apparatus for measuring object motion using camera images may include measuring a global optical flow field of a scene. The scene may include target and reference objects captured in an image sequence. Motion of a camera used to capture the image sequence may be determined relative to the scene by measuring an apparent, sub-pixel motion of the reference object with respect to an imaging plane of the camera. Motion of the target object corrected for the camera motion may be calculated based on the optical flow field of the scene and on the apparent, sub-pixel motion of the reference object with respect to the imaging plane of the camera. Embodiments may enable measuring vibration of structures and objects from long distance in relatively uncontrolled settings, with or without accelerometers, with high signal-to-noise ratios.
    Type: Application
    Filed: February 28, 2017
    Publication date: March 1, 2018
    Inventors: Oral Buyukozturk, William T. Freeman, Frederic Durand, Myers Abraham Davis, Neal Wadhwa, Justin G. Chen
  • Publication number: 20170220718
    Abstract: Structural health monitoring (SHM) is essential but can be expensive to perform. In an embodiment, a method includes sensing vibrations at a plurality of locations of a structure by a plurality of time-synchronized sensors. The method further includes determining a first set of dependencies of all sensors of the time-synchronized sensors at a first sample time to any sensors of a second sample time, and determining a second set of dependencies of all sensors of the time-synchronized sensors at the second sample time to any sensors of a third sample time. The second sample time is later than the first sample time, and the third sample time is later than the second sample time. The method then determines whether the structure has changed if the first set of dependencies is different from the second set of dependencies. Therefore, automated SHM can ensure safety at a lower cost to building owners.
    Type: Application
    Filed: February 1, 2016
    Publication date: August 3, 2017
    Inventors: William T. Freeman, Oral Buyukozturk, John W. Fisher, III, Frederic Durand, Hossein Mobahi, Neal Wadhwa, Zoran Dzunic, Justin G. Chen, James Long, Reza Mohammadi Ghazi, Theodericks Johannes Smit, Sergio Daniel Kapusta
  • Publication number: 20160267664
    Abstract: Embodiments can be used to synthesize physically plausible animations of target objects responding to new, previously unseen forces. Knowledge of scene geometry or target material properties is not required, and a basis set for creating realistic synthesized motions can be developed using only input video of the target object. Embodiments can enable new animation and video production techniques.
    Type: Application
    Filed: March 11, 2016
    Publication date: September 15, 2016
    Inventors: Myers Abraham Davis, Frederic Durand, Justin G. Chen