Patents by Inventor Jutta Kloewer

Jutta Kloewer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11441217
    Abstract: A method produces semi-finished products from a nickel-based alloy having the composition (in wt. %): Ni>50-<55%, Cr>17-<21%, Nb>4.8-<5.2%, Mo>2.8-<3.3%, Ti>0.8-<1.15%, Al>0.4-<0.6%, C maximum 0.045%, Co maximum 1.0%, Mn maximum 0.35%, Si maximum 0.35%, S maximum 0.01%, Cu maximum 0.3%, the remainder iron and unavoidable impurities. B 0.0001-0.01%, P 0.0001-0.02% are added. In the method: the alloy is melted, or remelted, to produce preliminary products that then undergo a hot-forming process and subsequently undergo a multi-stage annealing and aging treatment, a solution heat treatment being carried out between 1000 and 1100° C. for 1-3 hours, then cooled in air, water or oil, and made to undergo a precipitation hardening process between 650° C.-<770° C. for 5-9 hours, then cooled to room temperature, the intermediate products undergoing, if necessary, at least one further heating process.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: September 13, 2022
    Assignee: VDM Metals International GmbH
    Inventors: Jutta Kloewer, Ali Aghajani, Julia Kraemer geb. Rosenberg
  • Patent number: 11344968
    Abstract: A roll-bonded clad metal sheet and a method for producing a roll-bonded clad metal sheet is provided. The roll-bonded clad sheet includes a metallic base material layer and a metallic cladding material layer which are joined to one another by a metallurgical bond. The metallic cladding material layer includes a nickel-based material whose chemical composition includes, in % by mass, a proportion of more than 50% of Ni and a proportion of 3.1% of Nb. The metallurgical bond is obtained by a thermomechanical rolling process including a first rolling phase for prerolling, a second rolling phase for final forming and a cooling time between the first rolling phase and the second rolling phase, wherein a final rolling temperature of the second rolling phase is set to a value equal to or less than 880° C.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: May 31, 2022
    Assignees: voestalpine Grobblech GmbH, VDM Metals International GmbH
    Inventors: Franz Winter, Claudius Schindler, Franz-Josef Wahlers, Jutta Kloewer, Bodo Gehrmann, Heike Hattendorf
  • Patent number: 11098389
    Abstract: Hardened nickel-chromium-titanium-aluminum wrought alloy contains, (in mass %) 5-35% chromium, 1.0-3.0% titanium, 0.6-2.0% aluminum, 0.005-0.10% carbon, 0.0005-0.050% nitrogen, 0.0005-0.030% phosphorus, max. of each (next eleven) 0.010% sulfur 0.020% oxygen 0.70% silicon 2.0% manganese 0.05% magnesium 0.05% calcium 2.0% molybdenum 2.0% tungsten 0.5% niobium 0.5% copper 0.5% vanadium, 0-20% Fe, 0-15% cobalt, 0-0.20% Zr, 0.0001-0.008% boron, the remainder nickel and usual impurities. The nickel content is greater than 35%. Cr+Fe+Co?26% fh?0 fh=6.49+3.88 Ti+1.36 Al?0.301 Fe+(0.759?0.0209 Co) Co?0.428 Cr?28.2 C.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: August 24, 2021
    Assignee: VDM Metals International GmbH
    Inventors: Heike Hattendorf, Jutta Kloewer
  • Publication number: 20210078098
    Abstract: A roll-bonded clad metal sheet and a method for producing a roll-bonded clad metal sheet is provided. The roll-bonded clad sheet includes a metallic base material layer and a metallic cladding material layer which are joined to one another by a metallurgical bond. The metallic cladding material layer includes a nickel-based material whose chemical composition includes, in % by mass, a proportion of more than 50% of Ni and a proportion of 3.1% of Nb. The metallurgical bond is obtained by a thermomechanical rolling process including a first rolling phase for prerolling, a second rolling phase for final forming and a cooling time between the first rolling phase and the second rolling phase, wherein a final rolling temperature of the second rolling phase is set to a value equal to or less than 880° C.
    Type: Application
    Filed: August 10, 2017
    Publication date: March 18, 2021
    Inventors: Franz WINTER, Claudius SCHINDLER, Franz-Josef WAHLERS, Jutta KLOEWER, Bodo GEHRMANN, Heike HATTENDORF
  • Publication number: 20200325567
    Abstract: A method produces semi-finished products from a nickel-based alloy having the composition (in wt. %): Ni>50 -<55%, Cr>17-<21%, Nb>4.8-<5.2%, Mo>2.8-<3.3%, Ti>0.8-<1.15%, Al>0.4-<0.6%, C maximum 0.045%, Co maximum 1.0%, Mn maximum 0.35%, Si maximum 0.35%, S maximum 0.01%, Cu maximum 0.3%, the remainder iron and unavoidable impurities. B 0.0001-0.01%, P 0.0001-0.02% are added. In the method: the alloy is melted, or remelted, to produce preliminary products that then undergo a hot-forming process and subsequently undergo a multi-stage annealing and aging treatment, a solution heat treatment being carried out between 1000 and 1100° C. for 1-3 hours, then cooled in air, water or oil, and made to undergo a precipitation hardening process between 650° C.-<770° C. for 5-9 hours, then cooled to room temperature, the intermediate products undergoing, if necessary, at least one further heating process.
    Type: Application
    Filed: December 7, 2018
    Publication date: October 15, 2020
    Applicant: VDM Metals International GmbH
    Inventors: Jutta KLOEWER, Ali AGHAJANI, Julia KRAEMER geb. ROSENBERG
  • Publication number: 20190040501
    Abstract: A Ni—Co alloy includes 30 to 65 wt % Ni, >0 to max. 10 wt % Fe, >12 to <35 wt % Co, 13 to 23 wt % Cr, 1 to 6 wt % Mo, 4 to 6 wt % Nb+Ta, >0 to <3 wt % Al, >0 to <2 wt % Ti, >0 to max. 0.1 wt % C, >0 to max. 0.03 wt % P, >0 to max. 0.01 wt % Mg, >0 to max. 0.02 wt % B, >0 to max. 0.1 wt % Zr, which fulfils the following requirements and criteria: a) 900° C.<?? solvus temperature<1030° C. with 3 at %<Al+Ti (at %)<5.6 at % and 11.5 at %<Co<35 at %; b) stable microstructure after 500 h of ageing annealing at 800° C. with a ratio Al/Ti>5 (on the basis of the contents in at %).
    Type: Application
    Filed: October 1, 2018
    Publication date: February 7, 2019
    Applicant: VDM Metals International GmbH
    Inventors: Budo GEHRMANN, Jutta KLOEWER, Tatiana FEDOROVA, Joachim ROESLER
  • Patent number: 10174397
    Abstract: Titanium-free alloy which has great resistance to pitting and crevice corrosion and a high yield point in the strain-hardened state and includes (in wt %) a maximum of 0.02% C, a maximum of 0.01% S, a maximum of 0.03% N, 20.0-23.0% Cr, 39.0-44.0% Ni, 0.4-<1.0% Mn, 0.1-<0.5% Si, >4.0-<7.0% Mo, a maximum of 0.15% Nb, >1.5-<2.5% Cu, 0.05-<0.3% Al, a maximum of 0.5% Co, 0.001-<0.005% B, 0.005-<0.015% Mg, the remainder consisting of Fe and smelting-related impurities.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: January 8, 2019
    Assignee: VDM Metals International GmbH
    Inventors: Julia Rosenberg, Jutta Kloewer
  • Publication number: 20170002437
    Abstract: Titanium-free alloy which has great resistance to pitting and crevice corrosion and a high yield point in the strain-hardened state and includes (in wt %) a maximum of 0.02% C, a maximum of 0.01% S, a maximum of 0.03% N, 20.0-23.0% Cr, 39.0-44.0% Ni, 0.4-<1.0% Mn, 0.1-<0.5% Si, >4.0-<7.0% Mo, a maximum of 0.15% Nb, >1.5-<2.5% Cu, 0.05-<0.3% Al, a maximum of 0.5% Co, 0.001-<0.005% B, 0.005-<0.015% Mg, the remainder consisting of Fe and smelting-related impurities.
    Type: Application
    Filed: February 10, 2015
    Publication date: January 5, 2017
    Applicant: VDM Metals International GmbH
    Inventors: Julia ROSENBERG, Jutta KLOEWER
  • Publication number: 20160312341
    Abstract: Hardened nickel-chromium-titanium-aluminum wrought alloy with good wear resistance as well as very good resistance to corrosion at a high temperature, good creep resistance, and good workability contains, (in mass %) 5-35% chromium, 1.0-3.0% titanium, 0.6-2.0% aluminum, 0.005-0.10% carbon, 0.0005-0.050% nitrogen, 0.0005-0.030% phosphorus, max. 0.010% sulfur, max. 0.020% oxygen, max. 0.70% silicon, max. 2.0% manganese, max. 0.05% magnesium, max. 0.05% calcium, max. 2.0% molybdenum, max. 2.0% tungsten, max. 0.5% niobium, max. 0.5% copper, max. 0.5% vanadium, if required, 0-20% Fe, if required, 0-15% cobalt, if required 0-0.20% Zr, if required 0.0001-0.008% boron, the remainder being nickel and the usual impurities related to the method. The nickel content is greater than 35%. The relation of Cr+Fe+Co?26% (1) must be fulfilled in order to achieve good wear resistance and the relation fh?0 (2a) in which fh=6.49+3.88 Ti+1.36 Al?0.301 Fe+(0.759?0.0209 Co) Co?0.428 Cr?28.
    Type: Application
    Filed: January 12, 2015
    Publication date: October 27, 2016
    Applicant: VDM Metals GmbH
    Inventors: Heike HATTENDORF, Jutta KLOEWER
  • Patent number: 9476110
    Abstract: The invention relates to a nickel-chromium-aluminum-iron alloy, comprising (in wt %) 12 to 28% chromium, 1.8 to 3.0% aluminum, 1.0 to 15% iron, 0.01 to 0.5% silicon, 0.005 to 0.5% manganese, 0.01 to 0.20% yttrium, 0.02 to 0.60% titanium, 0.01 to 0.2% zirconium, 0.0002 to 0.05% magnesium, 0.0001 to 0.05% calcium, 0.03 to 0.11% carbon, 0.003 to 0.05% nitrogen, 0.0005 to 0.008% boron, 0.0001 to 0.010% oxygen, 0.001 to 0.030% phosphorus, max. 0.010% sulfur, max. 0.5% molybdenum, max. 0.5% tungsten, the remainder nickel and the common contaminants resulting from the process, wherein the following relations must be satisfied: 7.7C?x·a<1.0, wherein a=PN if PN>0 or a=0 if PN?0. Here, x=(1.0 Ti+1.06 Zr)/(0.251 Ti+0.132 Zr), PN=0.251 Ti+0.132 Zr?0.857 N, and Ti, Zr, N, and C are the concentration of the respective element in mass percent.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: October 25, 2016
    Assignee: VDM Metals International GmbH
    Inventors: Heike Hattendorf, Jutta Kloewer
  • Publication number: 20150354031
    Abstract: A Ni—Co alloy includes 30 to 65 wt % Ni, >0 to max. 10 wt % Fe, >12 to <35 wt % Co, 13 to 23 wt % Cr, 1 to 6 wt % Mo, 4 to 6 wt % Nb+Ta, >0 to <3 wt % Al, >0 to <2 wt % Ti, >0 to max. 0.1 wt % C, >0 to max. 0.03 wt % P, >0 to max. 0.01 wt % Mg, >0 to max. 0.02 wt % B, >0 to max. 0.1 wt % Zr, which fulfils the following requirements and criteria: a) 900° C.<?? solvus temperature<1030° C. with 3 at %<Al+Ti (at %)<5.6 at % and 11.5 at %<Co<35 at %; b) stable microstructure after 500 h of ageing annealing at 800° C. with a ratio Al/Ti>5 (on the basis of the contents in at %).
    Type: Application
    Filed: February 13, 2014
    Publication date: December 10, 2015
    Applicant: VDM Metals GmbH
    Inventors: Budo GEHRMANN, Jutta KLOEWER, Tatiana FEDOROVA, Joachim ROESLER
  • Patent number: 9011764
    Abstract: A nickel-chromium-cobalt-molybdenum alloy includes (in weight %) Cr 21-23%, Fe 0.05-1.5%, C 0.05-0.08%, Mn?0.5%, Si?0.25%, Co 11-13%, Cu?0.15%, Mo 8.0-10.0%, Ti 0.3-0.5%, Al 0.8-1.3%, P<0.012%, S<0.008%, B>0.002-<0.006%, Nb>0-1%, N?0.015%, Mg?0.025%, Ca?0.01%, V 0.005-0.6%, optionally W in contents between 0.02-max. 2%, Ni rest as well as smelting-related impurities, in the form of tubes, sheets, wire, bars, strips or forgings, wherein the alloy satisfies the following formula: X3=5?50, wherein X ? ? 3 = 100 * X ? ? 1 X ? ? 2 and X1=C+5N and X2=0.5Ti+Nb+0.5 V.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: April 21, 2015
    Assignee: VDM Metals GmbH
    Inventors: Jutta Kloewer, Juergen Tewes, Ralf-Udo Husemann
  • Publication number: 20130323113
    Abstract: The invention relates to a nickel-chromium-aluminum-iron alloy, comprising (in wt %) 12 to 28% chromium, 1.8 to 3.0% aluminum, 1.0 to 15% iron, 0.01 to 0.5% silicon, 0.005 to 0.5% manganese, 0.01 to 0.20% yttrium, 0.02 to 0.60% titanium, 0.01 to 0.2% zirconium, 0.0002 to 0.05% magnesium, 0.0001 to 0.05% calcium, 0.03 to 0.11% carbon, 0.003 to 0.05% nitrogen, 0.0005 to 0.008% boron, 0.0001 to 0.010% oxygen, 0.001 to 0.030% phosphorus, max. 0.010% sulfur, max. 0.5% molybdenum, max. 0.5% tungsten, the remainder nickel and the common contaminants resulting from the process, wherein the following relations must be satisfied: 7.7C?x·a<1.0, wherein a=PN if PN>0 or a=0 if PN?0. Here, x=(1.0 Ti+1.06 Zr)/(0.251 Ti+0.132 Zr), PN=0.251 Ti+0.132 Zr?0.857 N, and Ti, Zr, N, and C are the concentration of the respective element in mass percent.
    Type: Application
    Filed: February 17, 2012
    Publication date: December 5, 2013
    Applicant: OUTOKUMPU VDM GMBH
    Inventors: Heike Hattendorf, Jutta Kloewer
  • Publication number: 20130011295
    Abstract: A nickel-chromium-cobalt-molybdenum alloy includes (in weight %) Cr 21-23%, Fe 0.05-1.5%, C 0.05-0.08%, Mn?0.5%, Si?0.25%, Co 11-13%, Cu?0.15%, Mo 8.0-10.0%, Ti 0.3-0.5%, Al 0.8-1.3%, P<0.012%, S<0.008%, B>0.002-<0.006%, Nb>0-1%, N?0.015%, Mg?0.025%, Ca?0.01%, V 0.005-0.6%, optionally W in contents between 0.02-max. 2%, Ni rest as well as smelting-related impurities, in the form of tubes, sheets, wire, bars, strips or forgings, wherein the alloy satisfies the following formula: X3=5?50, wherein X ? ? 3 = 100 * X ? ? 1 X ? ? 2 and X1=C+5N and X2=0.5Ti+Nb+0.5V.
    Type: Application
    Filed: March 15, 2011
    Publication date: January 10, 2013
    Applicant: THYSSENKRUPP VDM GMBH
    Inventors: Jutta Kloewer, Juergen Tewes, Ralf-Udo Husemann
  • Publication number: 20110171490
    Abstract: A method for producing composite metal semi-finished products wherein an electrode composed of a second metal or a second metal alloy is introduced into a main body designed as a crucible and composed of a first metal or a first metal alloy, and the electrode is fused off inside the main body while current is supplied, such that the first metal or the first metal alloy of the main body is melted over a defined cross-section, wherein the two metals or the two metal alloys after solidification thereof form a slag-free mixed zone composed of the two metals or the two metal alloys.
    Type: Application
    Filed: July 11, 2009
    Publication date: July 14, 2011
    Applicant: ThyssenKrupp VDM GmbH
    Inventors: Cihangir Demirci, Jutta Kloewer
  • Publication number: 20100310412
    Abstract: Austentic heat-resistant nickel-base alloy comprising (in % by mass) 0.03-0.1% of C, 28-32% of Cr, 0.01-<0.5% of Mn, 0.01-<0.3% of Si, 0.01-<1.0% of Mo, 2.5-3.2% of Ti, 0.01-<0.5% of Nb, 0.01-<0.5% of Cu, 0.05-<2.0% of Fe, 0.7-1.0% of Al, 0.001-<0.03% of Mg, 0.01-<1.0% of Co, 0.01-0.10% of Hf, 0.01-0.10% of Zr, 0.002-0.02% of B, 0.001-0.01% of N, max. 0.01% of 5, max. 0.005% of Pb, max. 0.0005% of Bi, max. 0.01% of Ag, balance Ni and minor components due to the production method, where the sum of Ti +Al is from 3.3 to 4.3%, the sum of C+(10×B) is from 0.05 to 0.2%, the sum of Hf+Zr is from 0.05 to 0.15%, the Ti/Al ratio is >3 and Zr/Hf is 0.1 to 0.5.
    Type: Application
    Filed: November 25, 2008
    Publication date: December 9, 2010
    Inventors: Jutta Kloewer, Bernd De Boer, Dietmar Schlager
  • Publication number: 20100003163
    Abstract: Nickel-based alloy, consisting of (in % by mass) Al 1.2-<2.0% Si 1.2-<1.8% C 0.001-0.1% S 0.001-0.1% Cr 0.03-0.1% Mn 0.03-0.1% Cu max. 0.1% Fe 0.02-0.2% Mg 0.005-0.06% Pb max. 0.005% Y 0.05-0.15% and Hf 0.05-0.10% or Y 0.05-0.15% and La 0.05-0.10% or Y 0.05-0.15% and Hf 0.05-0.10% and La 0.05-0.10% Ni remainder together with manufacturing-related impurities.
    Type: Application
    Filed: July 6, 2007
    Publication date: January 7, 2010
    Inventors: Jutta Kloewer, Frank Scheide
  • Publication number: 20050026788
    Abstract: The invention relates to a metal strip made from a layer composite for epitaxial coating and a method for production thereof. The aim of the invention is to produce such a high-strength metal strip and a corresponding production method. Said metal strip is a layer composite made from at least one biaxially-textured base layer of the metals Ni, Cu, Ag or alloys thereof and at least one further metallic layer, whereby the individual further metallic layers are made from one or several intermetallic phases or from a single metal in which one or several intermetallic phases are contained. The production method is characterized in that the formation of intermetallic phases at the end of the production process is carried out by means of interdiffusion of elements provided in the layers. Such strips can be advantageously used, for example, as support strips for the deposition of biaxial textured layers made from YBa2Cu3Ox high temperature superconducting material.
    Type: Application
    Filed: December 15, 2002
    Publication date: February 3, 2005
    Inventors: Jutta Kloewer, Bernd De Boer, Sarma Vadlamani