Patents by Inventor Kadriye Deniz Bozdag

Kadriye Deniz Bozdag has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10559338
    Abstract: Techniques for reading a Multi-Bit Cell (MBC) can include sensing a state parameter value, such as source line voltage, and applying a successive one of N programming parameter values, such as successive programming currents, between instances of sensing the state parameter values. The N successive programming parameter values can be selected to program the state of a corresponding one of N cell elements of the MBC to a respective state parameter value. Successive ones of the sensed state parameter values can be compared to determine N state change results, which can be used to determine the read state of the MBC.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: February 11, 2020
    Assignee: Spin Memory, Inc.
    Inventors: Michail Tzoufras, Marcin Gajek, Kadriye Deniz Bozdag, Mourad El Baraji
  • Publication number: 20200043535
    Abstract: An apparatus includes two or more magnetic tunnel junctions (MTJs), including a first MTJ having a first magnetic characteristic and a second MTJ having a second magnetic characteristic. The first magnetic characteristic is distinct from the second magnetic characteristic. The first magnetic characteristic is based on a first magnetic anisotropy and a first offset field on a first storage layer of the first MTJ. The second magnetic characteristic is based on a second magnetic anisotropy and a second offset field on a second storage layer of the second MTJ, The apparatus further includes a metallic separator coupling the first MTJ with the second MTJ, wherein the first MTJ and the second MTJ are arranged in series.
    Type: Application
    Filed: July 9, 2019
    Publication date: February 6, 2020
    Inventors: Kadriye Deniz Bozdag, Marcin Gajek, Mourad El Baraji, Eric Michael Ryan
  • Publication number: 20200043540
    Abstract: A method of writing data into a memory device is disclosed. The method comprises utilizing a pipeline to process write operations of a first plurality of data words addressed to a memory bank and writing a second plurality of data words and associated memory addresses into an error buffer. The method also comprises monitoring a first counter value which tracks a number of write 1 errors and a second counter value which tracks a number of write 0 errors in the memory bank. Further, the method comprises determining if the first counter value and the second counter value have exceeded a predetermined threshold. Responsive to a determination that the first counter value has exceeded the predetermined threshold increasing a write 1 voltage of the memory bank, and, further, responsive to a determination that the second counter value has exceeded the predetermined threshold increasing a write 0 voltage of the memory bank.
    Type: Application
    Filed: October 10, 2019
    Publication date: February 6, 2020
    Inventors: Neal BERGER, Benjamin LOUIE, Kadriye Deniz BOZDAG
  • Publication number: 20200013827
    Abstract: A method for forming three-dimensional magnetic memory arrays by forming crystalized silicon structures from amorphous structures in the magnetic memory array, wherein the temperature needed to crystalize the amorphous silicon is lower than the temperature budget of the memory element so as to avoid damage to the memory element. An amorphous silicon is deposited, followed by a layer of Ti or Co. An annealing process is then performed which causes the Ti or Co to form TiSi2 or CoSi2 and also causes the underlying amorphous silicon to crystallize.
    Type: Application
    Filed: December 31, 2018
    Publication date: January 9, 2020
    Inventors: Kuk-Hwan Kim, Dafna Beery, Marcin Gajek, Michail Tzoufras, Kadriye Deniz Bozdag, Eric Michael Ryan, Satoru Araki, Andrew J. Walker
  • Publication number: 20200013455
    Abstract: Techniques for reading a Multi-Bit Cell (MBC) can include sensing a state parameter value, such as source line voltage, and applying a successive one of N programming parameter values, such as successive programming currents, between instances of sensing the state parameter values. The N successive programming parameter values can be selected to switch the state of a corresponding one of N cell elements of the MBC. Successive ones of the sensed state parameter values can be compared to determine N state change results, which can be used to determine the read state of the MBC.
    Type: Application
    Filed: September 5, 2018
    Publication date: January 9, 2020
    Inventors: Michail TZOUFRAS, Marcin GAJEK, Kadriye Deniz BOZDAG
  • Publication number: 20200013445
    Abstract: Techniques for reading a Multi-Bit Cell (MBC) can include sensing a state parameter value, such as source line voltage, and applying a successive one of N programming parameter values, such as successive programming currents, between instances of sensing the state parameter values. The N successive programming parameter values can be selected to program the state of a corresponding one of N cell elements of the MBC to a respective state parameter value. Successive ones of the sensed state parameter values can be compared to determine N state change results, which can be used to determine the read state of the MBC.
    Type: Application
    Filed: July 6, 2018
    Publication date: January 9, 2020
    Inventors: Michail Tzoufras, Marcin Gajek, Kadriye Deniz Bozdag, Mourad El Baraji
  • Publication number: 20200013828
    Abstract: A method for crystalized silicon structures from amorphous structures in a magnetic memory array, wherein the temperature needed to crystalize the amorphous silicon is lower than the temperature budget of the memory element so as to avoid damage to the memory element. An amorphous silicon is deposited, followed by a layer of Ti or Co. An annealing process is then performed which causes the Ti or Co to form TiSi2 or CoSi2 and also causes the underlying amorphous silicon to crystallize.
    Type: Application
    Filed: December 31, 2018
    Publication date: January 9, 2020
    Inventors: Kuk-Hwan Kim, Dafna Beery, Marcin Gajek, Michail Tzoufras, Kadriye Deniz Bozdag, Eric Michael Ryan, Satoru Araki, Andrew J. Walker
  • Publication number: 20200013454
    Abstract: Techniques for reading a Multi-Bit Cell (MBC) can include sensing a state parameter value, such as source line voltage, and applying a successive one of N programming parameter values, such as successive programming currents, between instances of sensing the state parameter values. The N successive programming parameter values can be selected to switch the state of a corresponding one of N cell elements of the MBC. Successive ones of the sensed state parameter values can be compared to determine N state change results, which can be used to determine the read state of the MBC.
    Type: Application
    Filed: July 6, 2018
    Publication date: January 9, 2020
    Inventors: Michail Tzoufras, Marcin Gajek, Kadriye Deniz Bozdag, Mourad El Baraji
  • Patent number: 10460778
    Abstract: A magnetic device, according to one approach, includes: a plurality of perpendicular magnetic tunnel junction (p-MTJ) cells, each p-MTJ cell having a transistor and a magnetic tunnel junction (MTJ) sensor. Moreover, each of the transistors includes a drain terminal, a source terminal, and a gate terminal. The magnetic device also includes: a first common word line coupled to the gate terminal of each transistor in a first subset of the plurality of p-MTJ cells, a first common bit line coupled to a first end of each MTJ sensor in a second subset of the plurality of p-MTJ cells, and a first common source line coupled to the drain terminal of each transistor in the first subset. A second end of each of the MTJ sensors in the second subset is coupled to the source terminal of each respective transistor in the second subset.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: October 29, 2019
    Assignee: SPIN MEMORY, INC.
    Inventors: Kuk-Hwan Kim, Dafna Beery, Gian Sharma, Marcin Gajek, Kadriye Deniz Bozdag, Girish Jagtiani, Eric Michael Ryan, Michail Tzoufras, Amitay Levi, Andrew J. Walker
  • Patent number: 10403343
    Abstract: A memory cell apparatus is provided. The apparatus comprises two or more magnetic tunnel junctions (MTJs), including a first MTJ having a first magnetic characteristic and a first electrical characteristic and a second MTJ having a second magnetic characteristic and a second electrical characteristic. The first magnetic characteristic is distinct from the second magnetic characteristic. The apparatus further comprises a transistor having three terminals, where the first MTJ is coupled to a first terminal of the three terminals and a metallic separator coupling the first MTJ with the second MTJ. The first MTJ and the second MTJ are arranged in series.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: September 3, 2019
    Assignee: SPIN MEMORY, INC.
    Inventors: Kadriye Deniz Bozdag, Marcin Gajek, Mourad El Baraji, Eric Michael Ryan
  • Patent number: 10360961
    Abstract: Methods and structures useful for magnetoresistive random-access memory (MRAM) are disclosed. The MRAM device has a magnetic tunnel junction stack having a significantly improved performance of the free layer in the magnetic tunnel junction structure. The MRAM device utilizes an in-plane polarization magnetic layer and a perpendicular MTJ in conjugation with a alternating current precharge and a programming current pulse that comprises an alternating perturbation frequency and a direct current.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: July 23, 2019
    Assignee: Spin Memory, Inc.
    Inventors: Michail Tzoufras, Marcin Jan Gajek, Kadriye Deniz Bozdag, Mourad El Baraji
  • Patent number: 10347308
    Abstract: A magnetic storage device is provided. The magnetic storage device comprises a magnetic memory cell, which includes two or more magnetic tunnel junctions (MTJs), including a first MTJ having a first magnetic characteristic and a first electrical characteristic and a second MTJ has a second magnetic characteristic and a second electrical characteristic, wherein the first magnetic characteristic is distinct from the second magnetic characteristic. The magnetic memory cell further comprises a bottom electrode and a top electrode, wherein the two or more MTJs are arranged between the top and bottom electrode in parallel with respect to each other. The magnetic storage device further comprises readout circuitry coupled to the bottom electrode or the top electrode of the magnetic memory cell and write circuitry coupled to the bottom electrode or the top electrode of the magnetic memory cell.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: July 9, 2019
    Assignee: SPIN MEMORY, INC.
    Inventors: Kadriye Deniz Bozdag, Marcin Gajek, Mourad El Baraji, Eric Michael Ryan
  • Publication number: 20190207084
    Abstract: The various implementations described herein include methods, devices, and systems for operating magnetic memory devices. In one aspect, a magnetic memory device includes: (1) a core; (2) a plurality of layers that surround the core in succession; (3) a first input terminal coupled to the core and configured to receive a first current, where: (a) the first current flows radially from the core through the plurality of layers; and (b) the radial flow of the first current imparts a torque on, at least, a magnetization of an inner layer of the plurality of layers; and (4) a second input terminal coupled to the core and configured to receive a second current, where: (i) the second current imparts a Spin Hall Effect (SHE) around a perimeter of the core; and (ii) the SHE contributes to the torque imparted on the magnetization of the inner layer by the first current.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 4, 2019
    Inventors: Michail Tzoufras, Marcin Gajek, Kadriye Deniz Bozdag, Eric Michael Ryan
  • Publication number: 20190206463
    Abstract: A magnetic device, according to one approach, includes: a plurality of perpendicular magnetic tunnel junction (p-MTJ) cells, each p-MTJ cell having a transistor and a magnetic tunnel junction (MTJ) sensor. Moreover, each of the transistors includes a drain terminal, a source terminal, and a gate terminal. The magnetic device also includes: a first common word line coupled to the gate terminal of each transistor in a first subset of the plurality of p-MTJ cells, a first common bit line coupled to a first end of each MTJ sensor in a second subset of the plurality of p-MTJ cells, and a first common source line coupled to the drain terminal of each transistor in the first subset. A second end of each of the MTJ sensors in the second subset is coupled to the source terminal of each respective transistor in the second subset.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 4, 2019
    Inventors: Kuk-Hwan Kim, Dafna Beery, Gian Sharma, Marcin Gajek, Kadriye Deniz Bozdag, Girish Jagtiani, Eric Michael Ryan, Michail Tzoufras, Amitay Levi, Andrew J. Walker
  • Publication number: 20190206939
    Abstract: A magnetic storage device is provided. The magnetic storage device comprises a magnetic memory cell, which includes two or more magnetic tunnel junctions (MTJs), including a first MTJ having a first magnetic characteristic and a first electrical characteristic and a second MTJ has a second magnetic characteristic and a second electrical characteristic, wherein the first magnetic characteristic is distinct from the second magnetic characteristic. The magnetic memory cell further comprises a bottom electrode and a top electrode, wherein the two or more MTJs are arranged between the top and bottom electrode in parallel with respect to each other. The magnetic storage device further comprises readout circuitry coupled to the bottom electrode or the top electrode of the magnetic memory cell and write circuitry coupled to the bottom electrode or the top electrode of the magnetic memory cell.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 4, 2019
    Inventors: Kadriye Deniz Bozdag, Marcin Gajek, Mourad El Baraji, Eric Michael Ryan
  • Publication number: 20190206465
    Abstract: A memory cell apparatus is provided. The apparatus comprises two or more magnetic tunnel junctions (MTJs), including a first MTJ having a first magnetic characteristic and a first electrical characteristic and a second MTJ having a second magnetic characteristic and a second electrical characteristic. The first magnetic characteristic is distinct from the second magnetic characteristic. The apparatus further comprises a transistor having three terminals, where the first MTJ is coupled to a first terminal of the three terminals and a metallic separator coupling the first MTJ with the second MTJ. The first MTJ and the second MTJ are arranged in series.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 4, 2019
    Inventors: Kadriye Deniz Bozdag, Marcin Gajek, Mourad El Baraji, Eric Michael Ryan
  • Publication number: 20190206462
    Abstract: Methods and structures useful for magnetoresistive random-access memory (MRAM) are disclosed. The MRAM device has a magnetic tunnel junction stack having a significantly improved performance of the free layer in the magnetic tunnel junction structure. The MRAM device utilizes an in-plane polarization magnetic layer and a perpendicular MTJ in conjugation with a alternating current precharge and a programming current pulse that comprises an alternating perturbation frequency and a direct current.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 4, 2019
    Inventors: Michail TZOUFRAS, Marcin Jan Gajek, Kadriye Deniz Bozdag, Mourad El Baraji
  • Publication number: 20190206472
    Abstract: A method for selectively writing to STT-MRAM using an AC current is provided. The method is performed in a memory device including two or more multilevel magnetic tunnel junctions (MTJs) arranged in series with respect to a single terminal of a transistor, where the two or more multilevel MTJs include a first MTJ having a first magnetic characteristic and first electrical characteristic and a second MTJ having a second magnetic characteristic that is distinct from the first magnetic characteristic and a second electrical characteristic. The method includes writing to an MTJ. The writing includes applying a DC current to the two or more MTJs and applying an AC current to the two or more MTJs, where the AC current is adjusted to a frequency that is tuned to a write assist frequency corresponding to the respective MTJ.
    Type: Application
    Filed: December 29, 2017
    Publication date: July 4, 2019
    Inventors: Kadriye Deniz Bozdag, Marcin Gajek, Michail Tzoufras, Eric Michael Ryan
  • Patent number: 10326073
    Abstract: The various implementations described herein include methods, devices, and systems for operating magnetic memory devices. In one aspect, a magnetic memory device includes: (1) a core; (2) a plurality of layers that surround the core in succession; (3) a first input terminal coupled to the core and configured to receive a first current, where: (a) the first current flows radially from the core through the plurality of layers; and (b) the radial flow of the first current imparts a torque on, at least, a magnetization of an inner layer of the plurality of layers; and (4) a second input terminal coupled to the core and configured to receive a second current, where: (i) the second current imparts a Spin Hall Effect (SHE) around a perimeter of the core; and (ii) the SHE contributes to the torque imparted on the magnetization of the inner layer by the first current.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: June 18, 2019
    Assignee: SPIN MEMORY, INC.
    Inventors: Michail Tzoufras, Marcin Gajek, Kadriye Deniz Bozdag, Eric Michael Ryan
  • Patent number: 10270027
    Abstract: Methods and structures useful for magnetoresistive random-access memory (MRAM) are disclosed. The MRAM device has a magnetic tunnel junction stack having a significantly improved performance of the free layer in the magnetic tunnel junction structure. The MRAM device utilizes a STNO, an in-plane polarization magnetic layer, and a perpendicular MTJ.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: April 23, 2019
    Assignee: Spin Memory, Inc.
    Inventors: Marcin Jan Gajek, Michail Tzoufras, Kadriye Deniz Bozdag, Eric Michael Ryan