Patents by Inventor Kamal Kumar Muthukrishnan

Kamal Kumar Muthukrishnan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11935574
    Abstract: A memory cell comprises a capacitor comprising a first capacitor electrode having laterally-spaced walls, a second capacitor electrode comprising a portion above the first capacitor electrode, and capacitor insulator material between the second capacitor electrode and the first capacitor electrode. The capacitor comprises an intrinsic current leakage path from one of the first and second capacitor electrodes to the other through the capacitor insulator material. A parallel current leakage path is between the second capacitor electrode and the first capacitor electrode. The parallel current leakage path is circuit-parallel with the intrinsic current leakage path, of lower total resistance than the intrinsic current leakage path, and comprises leaker material that is everywhere laterally-outward of laterally-innermost surfaces of the laterally-spaced walls of the first capacitor electrode. Other embodiments, including methods, are disclosed.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: March 19, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Michael Mutch, Ashonita A. Chavan, Sameer Chhajed, Beth R. Cook, Kamal Kumar Muthukrishnan, Durai Vishak Nirmal Ramaswamy, Lance Williamson
  • Patent number: 11923272
    Abstract: Some embodiments include a method of forming an integrated assembly. Semiconductor material is patterned into a configuration which includes a set of first upwardly-projecting structures spaced from one another by first gaps, and a second upwardly-projecting structure spaced from the set by a second gap. The second gap is larger than the first gaps. Conductive material is formed along the first and second upwardly-projecting structures and within the first and second gaps. First and second segments of protective material are formed over regions of the conductive material within the second gap, and then an etch is utilized to pattern the conductive material into first conductive structures within the first gaps and into second conductive structures within the second gap. Some embodiments include integrated assemblies.
    Type: Grant
    Filed: April 15, 2022
    Date of Patent: March 5, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Zhuo Chen, Irina V. Vasilyeva, Darwin Franseda Fan, Kamal Kumar Muthukrishnan
  • Publication number: 20220238417
    Abstract: Some embodiments include a method of forming an integrated assembly. Semiconductor material is patterned into a configuration which includes a set of first upwardly-projecting structures spaced from one another by first gaps, and a second upwardly-projecting structure spaced from the set by a second gap. The second gap is larger than the first gaps. Conductive material is formed along the first and second upwardly-projecting structures and within the first and second gaps. First and second segments of protective material are formed over regions of the conductive material within the second gap, and then an etch is utilized to pattern the conductive material into first conductive structures within the first gaps and into second conductive structures within the second gap. Some embodiments include integrated assemblies.
    Type: Application
    Filed: April 15, 2022
    Publication date: July 28, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Zhuo Chen, Irina V. Vasilyeva, Darwin Franseda Fan, Kamal Kumar Muthukrishnan
  • Patent number: 11335626
    Abstract: Some embodiments include a method of forming an integrated assembly. Semiconductor material is patterned into a configuration which includes a set of first upwardly-projecting structures spaced from one another by first gaps, and a second upwardly-projecting structure spaced from the set by a second gap. The second gap is larger than the first gaps. Conductive material is formed along the first and second upwardly-projecting structures and within the first and second gaps. First and second segments of protective material are formed over regions of the conductive material within the second gap, and then an etch is utilized to pattern the conductive material into first conductive structures within the first gaps and into second conductive structures within the second gap. Some embodiments include integrated assemblies.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: May 17, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Zhuo Chen, Irina V. Vasilyeva, Darwin Franseda Fan, Kamal Kumar Muthukrishnan
  • Publication number: 20220084906
    Abstract: Some embodiments include a method of forming an integrated assembly. Semiconductor material is patterned into a configuration which includes a set of first upwardly-projecting structures spaced from one another by first gaps, and a second upwardly-projecting structure spaced from the set by a second gap. The second gap is larger than the first gaps. Conductive material is formed along the first and second upwardly-projecting structures and within the first and second gaps. First and second segments of protective material are formed over regions of the conductive material within the second gap, and then an etch is utilized to pattern the conductive material into first conductive structures within the first gaps and into second conductive structures within the second gap. Some embodiments include integrated assemblies.
    Type: Application
    Filed: September 15, 2020
    Publication date: March 17, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Zhuo Chen, Irina V. Vasilyeva, Darwin Franseda Fan, Kamal Kumar Muthukrishnan
  • Publication number: 20220028442
    Abstract: A memory cell comprises a capacitor comprising a first capacitor electrode having laterally-spaced walls, a second capacitor electrode comprising a portion above the first capacitor electrode, and capacitor insulator material between the second capacitor electrode and the first capacitor electrode. The capacitor comprises an intrinsic current leakage path from one of the first and second capacitor electrodes to the other through the capacitor insulator material. A parallel current leakage path is between the second capacitor electrode and the first capacitor electrode. The parallel current leakage path is circuit-parallel with the intrinsic current leakage path, of lower total resistance than the intrinsic current leakage path, and comprises leaker material that is everywhere laterally-outward of laterally-innermost surfaces of the laterally-spaced walls of the first capacitor electrode. Other embodiments, including methods, are disclosed.
    Type: Application
    Filed: October 7, 2021
    Publication date: January 27, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Michael Mutch, Ashonita A. Chavan, Sameer Chhajed, Beth R. Cook, Kamal Kumar Muthukrishnan, Durai Vishak Nirmal Ramaswamy, Lance Williamson
  • Patent number: 11170834
    Abstract: A memory cell comprises a capacitor comprising a first capacitor electrode having laterally-spaced walls, a second capacitor electrode comprising a portion above the first capacitor electrode, and capacitor insulator material between the second capacitor electrode and the first capacitor electrode. The capacitor comprises an intrinsic current leakage path from one of the first and second capacitor electrodes to the other through the capacitor insulator material. A parallel current leakage path is between the second capacitor electrode and the first capacitor electrode. The parallel current leakage path is circuit-parallel with the intrinsic current leakage path, of lower total resistance than the intrinsic current leakage path, and comprises leaker material that is everywhere laterally-outward of laterally-innermost surfaces of the laterally-spaced walls of the first capacitor electrode. Other embodiments, including methods, are disclosed.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: November 9, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Michael Mutch, Ashonita A. Chavan, Sameer Chhajed, Beth R. Cook, Kamal Kumar Muthukrishnan, Durai Vishak Nirmal Ramaswamy, Lance Williamson
  • Patent number: 11139309
    Abstract: Integrated circuitry comprises a plurality of features horizontally arrayed in a two-dimensional (2D) lattice. The 2D lattice comprises a parallelogram unit cell having four lattice points and four straight-line sides between pairs of the four lattice points. The parallelogram unit cell has a straight-line diagonal there-across between two diagonally-opposed of the four lattice points. The straight-line diagonal is longer than each of the four straight-line sides. Individual of the features are at one of the four lattice points and occupy a maximum horizontal area that is horizontally elongated along a direction that is horizontally angled relative to each of the four straight-line sides. Other embodiments, including methods, are disclosed.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: October 5, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Kamal Kumar Muthukrishnan, Alex J. Schrinsky
  • Publication number: 20210012824
    Abstract: A memory cell comprises a capacitor comprising a first capacitor electrode having laterally-spaced walls, a second capacitor electrode comprising a portion above the first capacitor electrode, and capacitor insulator material between the second capacitor electrode and the first capacitor electrode. The capacitor comprises an intrinsic current leakage path from one of the first and second capacitor electrodes to the other through the capacitor insulator material. A parallel current leakage path is between the second capacitor electrode and the first capacitor electrode. The parallel current leakage path is circuit-parallel with the intrinsic current leakage path, of lower total resistance than the intrinsic current leakage path, and comprises leaker material that is everywhere laterally-outward of laterally-innermost surfaces of the laterally-spaced walls of the first capacitor electrode. Other embodiments, including methods, are disclosed.
    Type: Application
    Filed: July 10, 2019
    Publication date: January 14, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Michael Mutch, Ashonita A. Chavan, Sameer Chhajed, Beth R. Cook, Kamal Kumar Muthukrishnan, Durai Vishak Nirmal Ramaswamy, Lance Williamson
  • Publication number: 20210005619
    Abstract: Integrated circuitry comprises a plurality of features horizontally arrayed in a two-dimensional (2D) lattice. The 2D lattice comprises a parallelogram unit cell having four lattice points and four straight-line sides between pairs of the four lattice points. The parallelogram unit cell has a straight-line diagonal there-across between two diagonally-opposed of the four lattice points. The straight-line diagonal is longer than each of the four straight-line sides. Individual of the features are at one of the four lattice points and occupy a maximum horizontal area that is horizontally elongated along a direction that is horizontally angled relative to each of the four straight-line sides.
    Type: Application
    Filed: July 3, 2019
    Publication date: January 7, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Kamal Kumar Muthukrishnan, Alex J. Schrinsky