Patents by Inventor Kamalesh K. Sirkar

Kamalesh K. Sirkar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10005022
    Abstract: The present disclosure provides improved systems, assemblies and methods to remove and recover CO2 from emissions. More particularly, the present disclosure provides improved membrane contactors configured to remove CO2 from flue gas by temperature swing absorption. In exemplary embodiments, the present disclosure provides a novel hollow fiber membrane contactor that integrates absorption and stripping using a nonvolatile reactive absorbent (e.g., 80% polyamidoamine (PAMAM) dendrimer generation 0, and 20% of an ionic liquid (IL)). Equilibrium CO2 absorption in the nonvolatile viscous mixed absorbent is as high as 6.37 mmolCO2/g absorbent in the presence of moisture at 50° C. A novel membrane contactor is provided for CO2 absorption and stripping via a process identified as temperature swing membrane absorption (TSMAB). The contactor integrates non-dispersive gas absorption and hot water-based CO2 stripping in one device/assembly containing two sets of commingled hollow fibers.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: June 26, 2018
    Assignee: New Jersey Institute of Technology
    Inventor: Kamalesh K. Sirkar
  • Patent number: 9988956
    Abstract: An oil circulation system and method for continuously purifying engine oil including an engine operably connected to an oil reservoir, wherein at least one stream of oil is conveyed from the oil reservoir to the engine via a conduit, and circulated through the engine and conduit via engine operating pressure and/or one or more pumps, and at least one membrane unit positioned in a path of the oil stream such that oil containing dissolved/emulsified droplets of water is fed continuously through the membrane unit. A cross flow hollow fiber module adapted to be positioned in a system for continuously purifying engine oil, the hollow fiber module having a central feed distributor tube, hollow fiber membranes positioned around the central feed distributor tube, end caps with ports for receiving and emitting a flow of sweep air, and optionally a shell casing, wherein the central feed distributor tube includes openings sized and positioned to allow oil to flowing into the feed distributor tube to flow out radially.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: June 5, 2018
    Assignee: New Jersey Institute of Technology
    Inventors: Kamalesh K. Sirkar, Li Yang
  • Publication number: 20170312680
    Abstract: The present disclosure provides improved systems, assemblies and methods to remove and recover CO2 from emissions. More particularly, the present disclosure provides improved membrane contactors configured to remove CO2 from flue gas by temperature swing absorption. In exemplary embodiments, the present disclosure provides a novel hollow fiber membrane contactor that integrates absorption and stripping using a nonvolatile reactive absorbent (e.g., 80% polyamidoamine (PAMAM) dendrimer generation 0, and 20% of an ionic liquid (IL)). Equilibrium CO2 absorption in the nonvolatile viscous mixed absorbent is as high as 6.37 mmolCO2/g absorbent in the presence of moisture at 50° C. A novel membrane contactor is provided for CO2 absorption and stripping via a process identified as temperature swing membrane absorption (TSMAB). The contactor integrates non-dispersive gas absorption and hot water-based CO2 stripping in one device/assembly containing two sets of commingled hollow fibers.
    Type: Application
    Filed: July 20, 2017
    Publication date: November 2, 2017
    Applicant: New Jersey Institute of Technology
    Inventor: Kamalesh K. Sirkar
  • Patent number: 9751042
    Abstract: The present disclosure provides improved systems, assemblies and methods to remove and recover CO2 from emissions. More particularly, the present disclosure provides improved membrane contactors configured to remove CO2 from flue gas by temperature swing absorption. In exemplary embodiments, the present disclosure provides a novel hollow fiber membrane contactor that integrates absorption and stripping using a nonvolatile reactive absorbent (e.g., 80% polyamidoamine (PAMAM) dendrimer generation 0, and 20% of an ionic liquid (IL)). Equilibrium CO2 absorption in the nonvolatile viscous mixed absorbent is as high as 6.37 mmolCO2/g absorbent in the presence of moisture at 50° C. A novel membrane contactor is provided for CO2 absorption and stripping via a process identified as temperature swing membrane absorption (TSMAB). The contactor integrates non-dispersive gas absorption and hot water-based CO2 stripping in one device/assembly containing two sets of commingled hollow fibers.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: September 5, 2017
    Assignee: New Jersey Institute of Technology
    Inventor: Kamalesh K. Sirkar
  • Publication number: 20160016111
    Abstract: The present disclosure provides improved systems, assemblies and methods to remove and recover CO2 from emissions. More particularly, the present disclosure provides improved membrane contactors configured to remove CO2 from flue gas by temperature swing absorption. In exemplary embodiments, the present disclosure provides a novel hollow fiber membrane contactor that integrates absorption and stripping using a nonvolatile reactive absorbent (e.g., 80% polyamidoamine (PAMAM) dendrimer generation 0, and 20% of an ionic liquid (IL)). Equilibrium CO2 absorption in the nonvolatile viscous mixed absorbent is as high as 6.37 mmolCO2/g absorbent in the presence of moisture at 50° C. A novel membrane contactor is provided for CO2 absorption and stripping via a process identified as temperature swing membrane absorption (TSMAB). The contactor integrates non-dispersive gas absorption and hot water-based CO2 stripping in one device/assembly containing two sets of commingled hollow fibers.
    Type: Application
    Filed: July 16, 2015
    Publication date: January 21, 2016
    Applicant: NEW JERSEY INSTITUTE OF TECHNOLOGY
    Inventor: Kamalesh K. Sirkar
  • Patent number: 9085476
    Abstract: Liquid membrane systems are provided for use in pervaporation techniques that achieves high selectivity, ensure stability and prevent contamination of the fermentation broth. Tri-n-octylamine (TOA), tri-laurlyamine or tri-decylamine as a liquid membrane is immobilized in the pores of a hydrophobic hollow fiber substrate having a nanoporous hydrophobic coating on the broth side. The liquid membrane in the coated hollow fibers demonstrate high selectivity and reasonable mass fluxes of solvents in pervaporation. The mass fluxes were substantially increased with the same selectivity of solvents when an ultrathin liquid membrane was used. The addition of butanol into the feed solution increases membrane selectivity.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: July 21, 2015
    Assignee: New Jersey Institute of Technology
    Inventor: Kamalesh K. Sirkar
  • Patent number: 8167143
    Abstract: DCMD and VMD systems and methods for use in desalination applications are provided. The DCMD and VMD systems employ coated porous hydrophobic hollow fiber membranes. The coatings advantageously function to essentially eliminate pore wetting of the membrane, while permitting substantially unimpeded water vapor permeance through the fiber walls. The DCMD and VMD membranes are characterized by larger fiber bore diameters and wall thicknesses. The membranes substantially reduce the loss of brine sensible heat, e.g., heat loss via conductive heat flux through the membrane wall and the vapor space and, in exemplary embodiments, the brine-side heat transfer coefficient is dramatically enhanced by horizontal/vertical cross flow of brine over the outside surface of the coated fibers. Superior water vapor fluxes are achieved with the systems and methods.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: May 1, 2012
    Assignee: New Jersey Institute of Technology
    Inventors: Kamalesh K. Sirkar, Baoan Li
  • Patent number: 8036738
    Abstract: An iontophoretic transdermal drug delivery system that utilizes a porous conductive polyaniline membrane as one of two electrodes, with both electrodes in contact with an aqueous solution of the ingredient in ionic and nonionic form, and the membrane additionally in contact with the skin surface of the mammal. Upon providing the appropriate direct current flow by voltage generating means through the electrodes and solution, the ingredient is caused to pass through the porous membrane and be released in ionic form through the skin surface of the mammal.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: October 11, 2011
    Assignee: New Jersey Institute of Technology
    Inventors: Kamalesh K. Sirkar, Qiuxi Fan
  • Publication number: 20110014110
    Abstract: A solid hollow fiber cooling crystallizer and method for crystallizing aqueous and organic solutions are provided. The solid hollow fiber crystallizer (SHFC) for carrying out cooling crystallization of inorganic/organic microsolutes/macrosolutes from solution generally includes a bundle of non-porous hollow fibers mounted within a shell where a feed solution for crystallization flows through the lumen side of the hollow fibers and a cooling solution flows through the shell side to form nuclei and subsequently crystals in the feed solution at a temperature below its saturation temperature. The solid hollow fiber crystallizer may be combined with a mixing device, such as a completely stirred tank or static mixer, to further effectuate crystallization. The solid hollow fiber crystallizer may be operated in a number of modes including feed recycle mode, once through mode, SHFC-in-line static mixer in series mode, and SHFC-CST in series mode.
    Type: Application
    Filed: June 21, 2010
    Publication date: January 20, 2011
    Applicant: NEW JERSEY INSTITUTE OF TECHNOLOGY
    Inventors: Kamalesh K. Sirkar, Dimitrios Zarkadas
  • Patent number: 7811381
    Abstract: Antisolvent crystallization systems and methods are provided that employ porous hollow fiber membranes. The porous hollow fiber membrane includes a plurality of porous hollow fibers positioned within a shell, each porous hollow fiber defining a lumen side and shell side. A crystallizing solution is introduced to one side of the hollow fibers and an antisolvent is introduced to the other side of the fibers, in either cocurrent or countercurrent flow. One of the antisolvent and the crystallizing solution permeates in part through the porous hollow fiber membrane to the other side and crystals are formed thereby. Permeation of the antisolvent or the crystallizing solution establishes advantageous radial mixing that facilitates crystal formation of a desired size distribution. Downstream mixing, e.g., a completely stirred tank or a static mixer, may be employed to further improve crystallization operations.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: October 12, 2010
    Inventors: Kamalesh K. Sirkar, Dimitrios Zarkadas
  • Patent number: 7754083
    Abstract: A solid hollow fiber cooling crystallizer and method for crystallizing aqueous and organic solutions are provided. The solid hollow fiber crystallizer (SHFC) for carrying out cooling crystallization of inorganic/organic microsolutes/macrosolutes from solution generally includes a bundle of non-porous hollow fibers mounted within a shell where a feed solution for crystallization flows through the lumen side of the hollow fibers and a cooling solution flows through the shell side to form nuclei and subsequently crystals in the feed solution at a temperature below its saturation temperature. The solid hollow fiber crystallizer may be combined with a mixing device, such as a completely stirred tank or static mixer, to further effectuate crystallization. The solid hollow fiber crystallizer may be operated in a number of modes including feed recycle mode, once through mode, SHFC-in-line static mixer in series mode, and SHFC-CST in series mode.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: July 13, 2010
    Assignee: New Jersey Institute of Technology
    Inventors: Kamalesh K. Sirkar, Dimitrios Zarkadas
  • Publication number: 20090114594
    Abstract: Liquid membrane systems are provided for use in pervaporation techniques that achieves high selectivity, ensure stability and prevent contamination of the fermentation broth. Tri-n-octylamine (TOA), tri-laurlyamine or tri-decylamine as a liquid membrane is immobilized in the pores of a hydrophobic hollow fiber substrate having a nanoporous hydrophobic coating on the broth side. The liquid membrane in the coated hollow fibers demonstrate high selectivity and reasonable mass fluxes of solvents in pervaporation. The mass fluxes were substantially increased with the same selectivity of solvents when an ultrathin liquid membrane was used. The addition of butanol into the feed solution increases membrane selectivity.
    Type: Application
    Filed: September 2, 2008
    Publication date: May 7, 2009
    Applicant: NEW JERSEY INSTITUTE OF TECHNOLOGY
    Inventor: Kamalesh K. Sirkar
  • Publication number: 20090000080
    Abstract: A solid hollow fiber cooling crystallizer and method for crystallizing aqueous and organic solutions are provided. The solid hollow fiber crystallizer (SHFC) for carrying out cooling crystallization of inorganic/organic microsolutes/macrosolutes from solution generally includes a bundle of non-porous hollow fibers mounted within a shell where a feed solution for crystallization flows through the lumen side of the hollow fibers and a cooling solution flows through the shell side to form nuclei and subsequently crystals in the feed solution at a temperature below its saturation temperature. The solid hollow fiber crystallizer may be combined with a mixing device, such as a completely stirred tank or static mixer, to further effectuate crystallization. The solid hollow fiber crystallizer may be operated in a number of modes including feed recycle mode, once through mode, SHFC-in-line static mixer in series mode, and SHFC-CST in series mode.
    Type: Application
    Filed: May 2, 2008
    Publication date: January 1, 2009
    Applicant: NEW JERSEY INSTITUTE OF TECHNOLOGY
    Inventors: Kamalesh K. Sirkar, Dimitrios Zarkadas
  • Publication number: 20080197070
    Abstract: Thin film composite membranes on polyolefin structures may be prepared by interfacial polymerization on a polyolefin support. Polyolefin structures may have hollow and/or solid portions. The polyolefin structure may be hydrophilized prior to interfacial polymerization. The hydrophilized structure may also be treated with an aqueous monomer containing solution first, followed by the organic monomer containing solution. Alternatively, an organic monomer solution may be introduced first, followed by the aqueous monomer containing solution when treating a hydrophilized structure. The formed membrane may possess advantageous characteristics, including stability, hydrophilicity, predetermined pore sizes and/or solvent resistance.
    Type: Application
    Filed: October 30, 2007
    Publication date: August 21, 2008
    Applicant: NEW JERSEY INSTITUTE OF TECHNOLOGY
    Inventors: Kamalesh K. Sirkar, Alexander P. Korikov, Praveen B. Kosaraju
  • Patent number: 7318854
    Abstract: A system and method for separation of a gas, e.g., carbon dioxide, from a gaseous mixture using a hollow fiber membrane module. The module contains an absorbent solution that is effective in absorbing the gas for an extended period, e.g., eight hours, without regeneration or replacement. The absorbent solution is then regenerated by passing a sweep gas through the hollow fibers in the module. The separation system is particularly useful for fuel cell and battery applications.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: January 15, 2008
    Assignee: New Jersey Institute of Technology
    Inventor: Kamalesh K. Sirkar
  • Patent number: 6986847
    Abstract: An apparatus and method for recovering bioproducts from a feed solution. In one embodiment, the apparatus includes a module housing, a membrane means disposed in the housing for filtering the bioproducts from the feed solution wherein a portion of the membrane means is coated with a polymeric coating, and an adsorbent bed disposed in the housing for retaining the bioproducts which permeate through the membrane, wherein the apparatus is adapted to allow fractionation and purification of the retained bioproducts from the bed by elution.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: January 17, 2006
    Assignee: New Jersey Institute of Technology
    Inventors: Kamalesh K. Sirkar, Robert G. Luo, Yanke Xu, Xiao-Ping Dai
  • Patent number: 6824680
    Abstract: The invention is directed broadly to microporous films prepared from immiscible blends of at least two components, preferably polymers, which are produced via melt processing, a film formed therefrom, for example by extrusion and post-film-forming treatments comprising uniaxial or biaxial cold-stretching and hot-stretching. The films have a three-dimensional reticulated or interconnected network of microcracks or crazing throughout the film, extending from one surface of the film to the other, providing a stable porosity and pore size useful for a variety of filtration and other applications.
    Type: Grant
    Filed: May 7, 2001
    Date of Patent: November 30, 2004
    Assignee: New Jersey Institute of Technology
    Inventors: Chaiya Chandavasu, Marino Xanthos, Kamalesh K. Sirkar, Costas Gogos
  • Publication number: 20040069710
    Abstract: An apparatus and method for recovering bioproducts from a feed solution. In one embodiment, the apparatus includes a module housing, a membrane means disposed in the housing for filtering the bioproducts from the feed solution wherein a portion of the membrane means is coated with a polymeric coating, and an adsorbent bed disposed in the housing for retaining the bioproducts which permeate through the membrane, wherein the apparatus is adapted to allow fractionation and purification of the retained bioproducts from the bed by elution.
    Type: Application
    Filed: May 12, 2003
    Publication date: April 15, 2004
    Inventors: Kamalesh K. Sirkar, Robert G. Luo, Yanke Xu, Xiao-Ping Dai
  • Patent number: 6635103
    Abstract: A method for the separation of carbon dioxide from a gas mixture is described in which a dendrimer selective for carbon dioxide is present in an immobilized liquid membrane, the dendrimer being either in pure form or optionally with at least one solvent, such as but not limited to glycerol, polyethylene glycol, water, refrigerated methanol, NMP, or glycerol carbonate, the latter also having selective carbon dioxide properties as will be described below. In another embodiment, a dendrimer selective for carbon dioxide and capable of forming a film may be used in the method as the membrane itself, optionally with at least one solvent.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: October 21, 2003
    Assignee: New Jersey Institute of Technology
    Inventors: Kamalesh K. Sirkar, A. Sarma Kovvali, Hua Chen
  • Publication number: 20030033932
    Abstract: A method for the separation of carbon dioxide from a gas mixture is described in which a dendrimer selective for carbon dioxide is present in an immobilized liquid membrane, the dendrimer being either in pure form or optionally with at least one solvent, such as but not limited to glycerol, polyethylene glycol, water, refrigerated methanol, NMP, or glycerol carbonate, the latter also having selective carbon dioxide properties as will be described below. In another embodiment, a dendrimer selective for carbon dioxide and capable of forming a film may be used in the method as the membrane itself, optionally with at least one solvent.
    Type: Application
    Filed: July 19, 2002
    Publication date: February 20, 2003
    Inventors: Kamalesh K. Sirkar, A. Sarma Kovvali, Hua Chen