Patents by Inventor Karen B. Chapman

Karen B. Chapman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040242529
    Abstract: The invention provides compositions and methods related to human telomerase reverse transcriptase (hTRT), the catalytic protein subunit of human telomerase. The polynucleotides and polypeptides of the invention are useful for diagnosis, prognosis and treatment of human diseases, for changing the proliferative capacity of cells and organisms, and for identification and screening of compounds and treatments useful for treatment of diseases such as cancers.
    Type: Application
    Filed: June 24, 2004
    Publication date: December 2, 2004
    Applicants: GERON CORPORATION, UNIVERSITY TECHNOLOGY CORPORATION
    Inventors: Thomas R. Cech, Joachim Lingner, Toru Nakamura, Karen B. Chapman, Gregg B. Morin, Calvin B. Harley, William H. Andrews
  • Publication number: 20040219563
    Abstract: Transcriptional assays for identifying genes involved in differentiation are provided. These assays use stem cells into which are randomly integrated marker genes.
    Type: Application
    Filed: October 16, 2003
    Publication date: November 4, 2004
    Inventors: Michael West, Karen B. Chapman
  • Patent number: 6808880
    Abstract: The present invention is directed to novel telomerase nucleic acids and amino acids. In particular, the present invention is directed to nucleic acid and amino acid sequences encoding various telomerase protein subunits and motifs, including the 123 kDa and 43 kDa telomerase protein subunits of Euplotes aediculatus, and related sequences from Schizosaccharomyces, Saccharomyces sequences, and human telomerase. The present invention is also directed to polypeptides comprising these telomerase protein subunits, as well as functional polypeptides and ribonucleoproteins that contain these subunits.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: October 26, 2004
    Assignees: Geron Corporation, Regents of the University of Colorado
    Inventors: Thomas R. Cech, Joachim Lingner, Toru Nakamura, Karen B. Chapman, Gregg B. Morin, Calvin Harley, William H. Andrews
  • Publication number: 20040199935
    Abstract: Methods for de-differentiating or altering the life-span of desired “recipient” cells, e.g., human somatic cells, by the introduction of cytoplasm from a more primitive, less differentiated cell type, e.g., oocyte or blastomere are provided. These methods can be used to produce embryonic stem cells and to increase the efficiency of gene therapy by allowing for desired cells to be subjected to multiple genetic modifications without becoming senescent. Such cytoplasm may be fractionated and/or subjected to subtractive hybridization and the active materials (sufficient for de-differentiation) identified and produced by recombinant methods.
    Type: Application
    Filed: April 23, 2004
    Publication date: October 7, 2004
    Inventor: Karen B. Chapman
  • Patent number: 6627619
    Abstract: The present invention provides TRT antisense oligonucleotides, methods of detecting TRT, methods of diagnosing telomerase-related conditions, methods of diagnosing and providing a prognosis for cancer, and methods of treating telomerase-related conditions, including cancer.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: September 30, 2003
    Assignees: Geron Corporation, University Technology Corporation
    Inventors: Thomas R. Cech, Joachim Lingner, Toru Nakamura, Karen B. Chapman, Gregg B. Morin, Calvin B. Harley, William H. Andrews
  • Patent number: 6617110
    Abstract: The invention provides compositions and methods related to human telomerase reverse transcriptase (hTRT), the catalytic protein subunit of human telomerase. The polynucleotides and polypeptides of the invention are useful for diagnosis, prognosis and treatment of human diseases, for changing the proliferative capacity of cells and organisms, and for identification and screening of compounds and treatments useful for treatment of diseases such as cancers.
    Type: Grant
    Filed: November 24, 2000
    Date of Patent: September 9, 2003
    Assignees: Geron Corporation, University Technology Corporation
    Inventors: Thomas R. Cech, Joachim Lingner, Toru Nakamura, Karen B. Chapman, Gregg B. Morin, Calvin B. Harley, William H. Andrews
  • Publication number: 20030100093
    Abstract: The present invention is directed to cells comprising a recombinant polynucleotide sequence that encodes a telomerase reverse transcriptase protein, variant, or fragment having telomerase catalytic activity when complexed with a telomerase RNA.
    Type: Application
    Filed: January 11, 2002
    Publication date: May 29, 2003
    Inventors: Thomas R. Cech, Joachim Lingner, Toru Nakamura, Karen B. Chapman, Gregg B. Morin, Calvin B. Harley, William H. Andrews
  • Publication number: 20030096344
    Abstract: The present invention is directed to pharmaceutical compositions comprising a telomerase reverse transcriptase polypeptide or a polypeptide homologous to a telomerase reverse transcriptase. The present invention is also directed to pharmaceutical compositions comprising a polynucleotide encoding either of the aforesaid polypeptides. The present invention is further directed to methods for eliciting an immune response to telomerase reverse transcriptase in a subject.
    Type: Application
    Filed: January 11, 2002
    Publication date: May 22, 2003
    Inventors: Thomas R. Cech, Joachim Lingner, Toru Nakamura, Karen B. Chapman, Gregg B. Morin, Calvin B. Harley, William H. Andrews
  • Publication number: 20030059787
    Abstract: The present invention is directed to methods of identifying in a sample nucleic acids that encode human telomerase reverse transcriptase (hTRT) or its fragments. The present invention is also directed to oligonucleotide primers used in such methods. The invention is further directed to PCR products that hybridize under stringent conditions to a polynucleotide encoding hTRT, as well as hybridization complexes comprising one strand of a cellular hTRT nucleic acid and one strand of nucleic acid comprising a recombinant or synthetic fragment of hTRT.
    Type: Application
    Filed: January 18, 2002
    Publication date: March 27, 2003
    Inventors: Thomas R. Cech, Joachim Lingner, Toru Nakamura, Karen B. Chapman, Gregg B. Morin, Calvin B. Harley, William H. Andrews
  • Publication number: 20030044953
    Abstract: The present invention is directed to expression vectors comprising a polynucleotide that encodes a human telomerase reverse transcriptase (hTRT) protein, variant, or fragment. The present invention is also directed to host cells that comprise expression vectors comprising a polynucleotide that encodes a hTRT protein variant, or fragment.
    Type: Application
    Filed: January 18, 2002
    Publication date: March 6, 2003
    Inventors: Thomas R. Cech, Joachim Lingner, Toru Nakamura, Karen B. Chapman, Greg B. Morin, Calvin B. Harley, William H. Andrews
  • Publication number: 20030032075
    Abstract: The present invention is directed to monoclonal or recombinant antibodies or fragments thereof that bind to human telomerase reverse transcriptase (hTRT) protein. The present invention is also directed to methods of identifying or detecting hTRT polypeptides in biological samples. The invention is further directed to methods of generating antibodies that specifically bind to hTRT protein.
    Type: Application
    Filed: January 18, 2002
    Publication date: February 13, 2003
    Inventors: Thomas R. Cech, Joachim Lingner, Toru Nakamura, Karen B. Chapman, Gregg B. Morin, Calvin B. Harley, William H. Andrews
  • Publication number: 20030009019
    Abstract: The present invention is directed to novel telomerase nucleic acids and amino acids. In particular, the present invention is directed to nucleic acid and amino acid sequences encoding various telomerase protein subunits and motifs, including the 123 kDa and 43 kDa telomerase protein subunits of Euplotes aediculatus, and related sequences from Schizosaccharomyces, Saccharomyces sequences, and human telomerase. The present invention is also directed to polypeptides comprising these telomerase protein subunits, as well as functional polypeptides and ribonucleoproteins that contain these subunits.
    Type: Application
    Filed: November 12, 1999
    Publication date: January 9, 2003
    Inventors: THOMAS R. CECH, JOACHIM LINGNER, TORU NAKAMURA, KAREN B. CHAPMAN, GREGG B. MORIN, CALVIN B. HARLEY, WILLIAM H. ANDREWS
  • Publication number: 20020187471
    Abstract: The present invention is directed to novel telomerase nucleic acids and amino acids. In particular, the present invention is directed to nucleic acid and amino acid sequences encoding various telomerase protein subunits and motifs, including the 123 kDa and 43 kDa telomerase protein subunits of Euplotes aediculatus, and related sequences from Schizosaccharomyces, Saccharomyces sequences, and human telomerase. The present invention is also directed to polypeptides comprising these telomerase protein subunits, as well as functional polypeptides and ribonucleoproteins that contain these subunits.
    Type: Application
    Filed: January 19, 2001
    Publication date: December 12, 2002
    Inventors: Thomas R. Cech, Joachim Lingner, Toru Nakamura, Karen B. Chapman, Gregg B. Morin, Calvin Harley, William H. Andrews
  • Publication number: 20020173476
    Abstract: The present invention provides TRT antisense oligonucleotides, methods of detecting TRT, methods of diagnosing telomerase-related conditions, methods of diagnosing and providing a prognosis for cancer, and methods of treating telomerase-related conditions, including cancer.
    Type: Application
    Filed: September 14, 2001
    Publication date: November 21, 2002
    Inventors: Thomas R. Cech, Joachim Lingner, Toru Nakamura, Karen B. Chapman, Gregg B. Morin, Calvin B. Harley, William H. Andrews
  • Publication number: 20020164786
    Abstract: The present invention is directed to novel telomerase nucleic acids and amino acids. In particular, the present invention is directed to nucleic acid and amino acid sequences encoding various telomerase protein subunits and motifs, including the 123 kDa and 43 kDa telomerase protein subunits of Euplotes aediculatus, and related sequences from Schizosaccharomyces, Saccharomyces sequences, and human telomerase. The present invention is also directed to polypeptides comprising these telomerase protein subunits, as well as functional polypeptides and ribonucleoproteins that contain these subunits.
    Type: Application
    Filed: April 26, 2001
    Publication date: November 7, 2002
    Inventors: Thomas R. Cech, Joachim Lingner, Toru Nakamura, Karen B. Chapman, Gregg B. Morin, Calvin B. Harley, William H. Andrews
  • Patent number: 6475789
    Abstract: The invention provides compositions and methods related to human telomerase reverse transcriptase (hTRT), the catalytic protein subunit of human telomerase. The polynucleotides and polypeptides of the invention are useful for diagnosis, prognosis, and treatment of human diseases, for changing the proliferative capacity of cells and organisms, and for identification and screening of compounds and treatments useful for treatment of diseases such as cancers.
    Type: Grant
    Filed: August 14, 1997
    Date of Patent: November 5, 2002
    Assignees: University Technology Corporation, Geron Corporation
    Inventors: Thomas R. Cech, Joachim Lingner, Toru Nakamura, Karen B. Chapman, Gregg B. Morin, Calvin B. Harley, William H. Andrews
  • Patent number: 6444650
    Abstract: The present invention provides TRT antisense oligonucleotides, methods of detecting TRT, methods of diagnosing telomerase-related conditions, methods of diagnosing and providing a prognosis for cancer, and methods of treating telomerase-related conditions, including cancer.
    Type: Grant
    Filed: March 31, 1998
    Date of Patent: September 3, 2002
    Assignees: Geron Corporation, University Technology Corporation
    Inventors: Thomas R. Cech, Joachim Lingner, Toru Nakamura, Karen B. Chapman, Gregg B. Morin, Calvin B. Harley, William H. Andrews
  • Publication number: 20020001842
    Abstract: Methods for de-differentiating or altering the life-span of desired “recipient” cells, e.g., human somatic cells, by the introduction of cytoplasm from a more primitive, less differentiated cell type, e.g., oocyte or blastomere are provided. These methods can be used to produce embryonic stem cells and to increase the efficiency of gene therapy by allowing for desired cells to be subjected to multiple genetic modifications without becoming senescent. Such cytoplasm may be fractionated and/or subjected to subtractive hybridization and the active materials (sufficient for de-differentiation) identified and produced by recombinant methods.
    Type: Application
    Filed: December 15, 2000
    Publication date: January 3, 2002
    Inventor: Karen B. Chapman
  • Patent number: 6261836
    Abstract: The present invention is directed to telomerase nucleic acids and amino acids. In particular, the present invention is directed to nucleic acid and amino acid sequences encoding various telomerase protein subunits and motifs, including the 123 kDa and 43 kDa telomerase protein subunits of Euplotes aediculatus, and related sequences from Schizosaccharomyces, Saccharomyces sequences, and human telomerase. The present invention is also directed to polypeptides comprising these telomerase protein subunits, as well as functional polypeptides and ribonucleoproteins that contain these subunits.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: July 17, 2001
    Assignees: Geron Corporation, University Technology Corporation
    Inventors: Thomas R. Cech, Joachim Lingner, Toru Nakamura, Karen B. Chapman, Gregg B. Morin, Calvin B. Harley, William H. Andrews