Patents by Inventor Karl Pfaffenbach

Karl Pfaffenbach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030132420
    Abstract: Polishing powders of nanoscale dimensions are disclosed. Complex, multi-metal oxides are disclosed as constituents for chemical mechanical planarization, (CMP) as well as polishes for optical components, photonic devices, and other applications.
    Type: Application
    Filed: November 12, 2002
    Publication date: July 17, 2003
    Inventors: Tapesh Yadav, Karl Pfaffenbach
  • Publication number: 20030126948
    Abstract: A method of producing metal and alloy fine powders having purity in excess of 99.9%, preferably 99.999%, more preferably 99.99999%. Fine powders produced are of size preferably less than 10 micron, more preferably less than 1 micron, and most preferably less than 100 nanometers. Methods for producing such powders in high volume, low-cost, and reproducible quality are also outlined. The fine powders are useful in various applications such as biomedical, sensor, electronic, electrical, photonic, thermal, piezo, magnetic, catalytic and electrochemical products.
    Type: Application
    Filed: December 10, 2002
    Publication date: July 10, 2003
    Inventors: Tapesh Yadav, Roger Dirstine, Karl Pfaffenbach
  • Publication number: 20030124050
    Abstract: Post-processing methods for nanoparticles are disclosed. Methods for real time quality control of nanoscale powder manufacture are discussed. Uses of post-processed particles and consolidation methods are disclosed. Disclosed methods can enable commercial use of nanoscale powders in wide range of nanotechnology applications.
    Type: Application
    Filed: March 29, 2002
    Publication date: July 3, 2003
    Inventors: Tapesh Yadav, Karl Pfaffenbach
  • Publication number: 20030124043
    Abstract: A method of producing high purity nanoscale powders in which the purity of powders produced by the method exceeds 99.99%. Fine powders produced are of size preferably less than 1 micron, and more preferably less than 100 nanometers. Methods for producing such powders in high volume, low-cost, and reproducible quality are also outlined. The fine powders are envisioned to be useful in various applications such as biomedical, sensor, electronic, electrical, photonic, thermal, piezo, magnetic, catalytic and electrochemical products.
    Type: Application
    Filed: December 10, 2002
    Publication date: July 3, 2003
    Inventors: Tapesh Yadav, Karl Pfaffenbach
  • Publication number: 20030102099
    Abstract: Dispersed powders are disclosed that comprise fine nanoscale powders dispersed on coarser carrier powders. The composition of the dispersed fine powders may be oxides, carbides, nitrides, borides, chalcogenides, metals, and alloys. Fine powders discussed are of sizes less than 100 microns, preferably less than 10 micron, more preferably less than 1 micron, and most preferably less than 100 nanometers. Methods for producing such powders in high volume, low-cost, and reproducible quality are also outlined. Such powders are useful in various applications such as catalysts, sensor, electronic, electrical, photonic, thermal, biomedical, piezo, magnetic, catalytic and electrochemical products.
    Type: Application
    Filed: December 4, 2001
    Publication date: June 5, 2003
    Inventors: Tapesh Yadav, Karl Pfaffenbach, Roger Dirstine
  • Patent number: 6569397
    Abstract: A method of producing very high purity fine powders of oxides, carbides, nitrides, borides, chalcogenides, metals, and alloys. The purity of powders produced by the method exceeds 99.9%, preferably 99.999%, more preferably 99.99999%, and most preferably 99.9999999%. Fine powders produced are of size less than 100 microns, preferably less than 10 micron, more preferably less than 1 micron, and most preferably less than 100 nanometers. Methods for producing such powders in high volume, low-cost, and reproducible quality are also outlined. The very high purity, fine powders are envisioned to be useful in various applications such as biomedical, sensor, electronic, electrical, photonic, thermal, piezo, magnetic, catalytic and electrochemical products.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: May 27, 2003
    Inventors: Tapesh Yadav, Karl Pfaffenbach