Patents by Inventor Karthik Ramasubramanian

Karthik Ramasubramanian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11927689
    Abstract: A system includes a shift register to store data samples, where the shift register includes a cell under test (CUT), a left guard cell, a right guard cell, a left window, and a right window. The system includes two sets of comparators to compare incoming data samples with data samples in the left window and the right window to compute ranks of the incoming data samples. The system includes a sorted index array to store a rank of the data samples in the shift register. The system includes a selector to select a Kth smallest index from the sorted index array and its corresponding data sample from the shift register. The system includes a target comparator, where the first comparator input receives a data sample from the CUT and the second comparator input receives a Kth smallest data sample, and the comparator output indicates a CFAR target detection.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: March 12, 2024
    Assignee: Texas Instruments Incorporated
    Inventors: Sujaata Ramalingam, Karthik Subburaj, Pankaj Gupta, Anil Varghese Mani, Karthik Ramasubramanian, Indu Prathapan
  • Patent number: 11927690
    Abstract: A radar device is provided that includes a timing control component operable to generate, for each chirp of a sequence of chirps according to a set of chirp configuration parameters and a chirp profile for the chirp, chirp control signals to cause the radar device to transmit the chirp, the timing control component having chirp configuration parameter inputs, chirp profile parameter inputs, a chirp address output, and chirp control signal outputs, a chirp configuration storage component having chirp configuration parameter outputs coupled to corresponding inputs of the configuration parameter inputs of the timing control component, a chirp profile address output, and a chirp address input coupled to the chirp address output, and a chirp profile storage component having chirp profile parameter outputs coupled to the chirp profile parameter inputs of the timing control component; and a chirp profile address input coupled to the chirp profile address output.
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: March 12, 2024
    Assignee: Texas Instruments Incorporated
    Inventors: Tom Altus, Jasbir Singh Nayyar, Karthik Ramasubramanian, Brian Paul Ginsburg
  • Patent number: 11843684
    Abstract: An example method may include receiving, at a device, a first frame over a wireless network and constructing a preliminary data portion of a second frame. The second frame may be configured for transmission over the wireless network. The method may also include in response to the receiving of the first frame at the device, beginning transmission of a header portion of the second frame over the wireless network and after the beginning transmission of the header portion of the second frame, constructing, based on the preliminary data portion, a finalized data portion of the second frame for transmission over the wireless network.
    Type: Grant
    Filed: March 18, 2022
    Date of Patent: December 12, 2023
    Assignee: MaxLinear, Inc.
    Inventors: Huizhao Wang, Karthik Ramasubramanian, Denis Bykov, James Wood, Jun Jin, Lin Fang, Hongping Liu, Benjamin Mung, Ping Lu
  • Patent number: 11815621
    Abstract: A radar system is provided that includes a receive channel configured to receive a reflected signal and to generate a first digital intermediate frequency (IF) signal based on the reflected signal, a reference receive channel configured to receive a reflected signal and to generate a second digital IF signal based on the reflected signal, and digital mismatch compensation circuitry coupled to receive the first digital IF signal and the second digital IF signal, the digital mismatch compensation circuitry configured to process the first digital IF signal and the second digital IF signal to compensate for mismatches between the receive channel and the reference receive channel.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: November 14, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Sriram Murali, Karthik Subburaj, Karthik Ramasubramanian
  • Patent number: 11796634
    Abstract: A FMCW radar system with a built-in self-test (BIST) system for monitoring includes a receiver, a transmitter, and a frequency synthesizer. A FMCW chirp timing engine controls timing of operations at least one radar component. The BIST system includes at least one switchable coupling for coupling a first plurality of different analog signals including from a first plurality of selected nodes in the receiver or transmitter that are all coupled to a second number of monitor analog-to-digital converters (ADCs). The second number is less than (<) the first plurality of different analog signals. The BIST system includes a monitor timing engine and controller operating synchronously with the chirp timing engine, that includes a software configurable monitoring architecture for generating control signals including for selecting using the switchable coupling which analog signal to forward to the monitor ADC and when the monitor ADC samples the analog signals.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: October 24, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Karthik Subburaj, Indu Prathapan, Karthik Ramasubramanian, Brian P. Ginsburg
  • Patent number: 11782148
    Abstract: Aspects of the present disclosure provide for a radar system including a radar IC including a timing engine, a local oscillator, and a modulator. The timing engine is configured to generate one or more chirp control signals. The local oscillator is configured to receive the one or more chirp control signals and generate a frame including a first sequence of chirps according to the one or more chirp control signals. The modulator is configured to modulate the first sequence of chirps to generate a second sequence of chirps so the frame includes the first sequence of chirps and the second sequence of chirps offset by a first frequency value.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: October 10, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Karthik Subburaj, Sandeep Rao, Sriram Murali, Karthik Ramasubramanian
  • Patent number: 11747436
    Abstract: A noise-mitigated continuous-wave frequency-modulated radar includes, for example, a transmitter for generating a radar signal, a receiver for receiving a reflected radar signal and comprising a mixer for generating a baseband signal in response to the received radar signal and in response to a local oscillator (LO) signal, and a signal shifter coupled to at least one of the transmitter, LO input of the mixer in the receiver and the baseband signal generated by the mixer. The impact of amplitude noise or phase noise associated with interferers, namely, for example, strong reflections from nearby objects, and electromagnetic coupling from transmit antenna to receive antenna, on the detection of other surrounding objects is reduced by configuring the signal shifter in response to an interferer frequency and phase offset.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: September 5, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Karthik Subburaj, Karthik Ramasubramanian, Sriram Murali, Sreekiran Samala, Krishnanshu Dandu
  • Publication number: 20230204717
    Abstract: Methods, apparatus, systems and articles of manufacture to compensate radar system calibration are disclosed. A radio-frequency (RF) subsystem having a transmit channel, a receive channel, and a loopback path comprising at least a portion of the transmit channel and at least a portion of the receive channel, a loopback measurer to measure a first loopback response of the RF subsystem for a first calibration configuration of the RF subsystem, and to measure a second loopback response of the RF subsystem for a second calibration configuration of the RF subsystem, and a compensator to adjust at least one of a transmit programmable shifter or a digital front end based on a difference between the first loopback response and the second loopback response to compensate for a loopback response change when the RF subsystem is changed from the first calibration configuration to the second calibration configuration.
    Type: Application
    Filed: July 12, 2022
    Publication date: June 29, 2023
    Inventors: Karthik Subburaj, Shankar Narayanamoorthy, Karthik Ramasubramanian, Anand Gadiyar, Dheeraj Kumar Shetty, Shailesh Joshi
  • Patent number: 11579242
    Abstract: A radar hardware accelerator (HWA) includes a fast Fourier transform (FFT) engine including a pre-processing block for providing interference mitigation and/or multiplying a radar data sample stream received from ADC buffers within a split accelerator local memory that also includes output buffers by a pre-programmed complex scalar or a specified sample from an internal look-up table (LUT) to generate pre-processed samples. A windowing plus FFT block (windowed FFT block) is for multiply the pre-processed samples by a window vector and then processing by an FFT block for performing a FFT to generate Fourier transformed samples. A post-processing block is for computing a magnitude of the Fourier transformed samples and performing a data compression operation for generating post-processed radar data. The pre-processing block, windowed FFT block and post-processing block are connected in one streaming series data path.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: February 14, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Sandeep Rao, Karthik Ramasubramanian, Indu Prathapan, Raghu Ganesan, Pankaj Gupta
  • Patent number: 11579282
    Abstract: A radar system is provided that includes a radar transceiver integrated circuit (IC) configurable to transmit a first frame of chirps, and another radar transceiver IC configurable to transmit a second frame of chirps at a time delay ?T, wherein ?T=Tc/K, K?2 and Tc is an elapsed time from a start of one chirp in the first frame and the second frame and a start of a next chirp in the first frame and the second frame, wherein the radar system is configured to determine a velocity of an object in a field of view of the radar system based on first digital intermediate frequency signals generated responsive to receiving reflected chirps of the first frame and second digital IF signals generated responsive to receiving reflected chirps of the time delayed second frame, wherein the maximum measurable velocity is increased by a factor of K.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: February 14, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Sandeep Rao, Karthik Subburaj, Sriram Murali, Karthik Ramasubramanian
  • Patent number: 11556421
    Abstract: Data memory protection is provided for a signal processing system such as a radar system in which the data memory is protected with a common set of parity bits rather than requiring a set of parity bits for each memory word as in Error Correction Coded (ECC) memories. The common set of parity bits may be updated as memory words in the data memory are accessed as part of signal processing of one or more digital signals. The memory protection ensures that in the absence of memory errors the common parity bits are zero at the end of processing the digital signals as long as each word in the data memory that is used for storing the signal processing data is written and read an equal number of times.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: January 17, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Sandeep Rao, Karthik Ramasubramanian, Brian Paul Ginsburg
  • Publication number: 20220366004
    Abstract: A device includes a comparison circuit and a calculation circuit coupled to the comparison circuit. The comparison circuit is configured to receive a first digital input value (X) and a second digital input value (Y), and provide a first digital output value that indicates one of a first relationship, a second relationship, and a third relationship between X and Y. The calculation circuit is configured to receive X and Y, receive the first digital output value, and provide a second digital output value. The second digital output value is a first linear combination of X and Y responsive to the first digital output value indicating the first relationship, a second linear combination of X and Y responsive to the first digital output value indicating the second relationship, and a third linear combination of X and Y responsive to the first digital output value indicating the third relationship.
    Type: Application
    Filed: June 24, 2021
    Publication date: November 17, 2022
    Inventors: Shailesh JOSHI, Karthik SUBBURAJ, Karthik RAMASUBRAMANIAN
  • Publication number: 20220326368
    Abstract: A radar system is provided that includes a radar transceiver integrated circuit (IC) configurable to transmit a first frame of chirps, and another radar transceiver IC configurable to transmit a second frame of chirps at a time delay ?T, wherein ?T=Tc/K, K?2 and Tc is an elapsed time from a start of one chirp in the first frame and the second frame and a start of a next chirp in the first frame and the second frame, wherein the radar system is configured to determine a velocity of an object in a field of view of the radar system based on first digital intermediate frequency signals generated responsive to receiving reflected chirps of the first frame and second digital IF signals generated responsive to receiving reflected chirps of the time delayed second frame, wherein the maximum measurable velocity is increased by a factor of K.
    Type: Application
    Filed: June 17, 2022
    Publication date: October 13, 2022
    Inventors: Sandeep Rao, Karthik Subburaj, Sriram Murali, Karthik Ramasubramanian
  • Patent number: 11460543
    Abstract: A radar system is provided that includes a receive channel including a complex baseband and a processor coupled to the receive channel to receive a first plurality of digital intermediate frequency (IF) samples from an in-band (I) channel of the complex baseband and a corresponding second plurality of digital IF samples from a quadrature (Q) channel of the complex baseband, wherein the processor is configured to execute instructions to compute at least one failure metric based on the first plurality of digital IF samples and the second plurality of digital IF samples.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: October 4, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Karthik Ramasubramanian, Karthik Subburaj, Jasbir Singh Nayyar
  • Patent number: 11460540
    Abstract: A FMCW radar receiver includes a LO providing a chirped LO signal, an in-phase (I) channel for outputting I-data and a quadrature (Q) channel for outputting Q-data. A dynamic correction parameter generator generates IQ phase correction values (P[n]s) and IQ gain correction values (G[n]s) based on a frequency slope rate of the chirped LO signal for generating during intervals of chirps including a first sequence of P[n]s and G[n]s during a first chirp and a second sequence of P[n]s and G[n]s during a second chirp. An IQ mismatch (IQMM) correction circuit has a first IQMM input coupled to receive the I-data and a second IQMM input receiving the Q-data, and the P[n]s and G[n]s. During the first chirp the IQMM correction circuit provides first Q?-data and first I?-data and during the second chirp the IQMM correction circuit provides at least second Q?-data and second I?-data.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: October 4, 2022
    Assignee: Texas Instruments Incorporated
    Inventors: Pankaj Gupta, Sriram Murali, Karthik Ramasubramanian
  • Patent number: 11428777
    Abstract: A FMCW radar receiver includes a LO providing a chirped LO signal, an in-phase (I) channel for outputting I-data and a quadrature (Q) channel for outputting Q-data. A dynamic correction parameter generator generates IQ phase correction values (P[n]s) and IQ gain correction values (G[n]s) based on a frequency slope rate of the chirped LO signal for generating during intervals of chirps including a first sequence of P[n]s and G[n]s during a first chirp and a second sequence of P[n]s and G[n]s during a second chirp. An IQ mismatch (IQMM) correction circuit has a first IQMM input coupled to receive the I-data and a second IQMM input receiving the Q-data, and the P[n]s and G[n]s. During the first chirp the IQMM correction circuit provides first Q?-data and first I?-data and during the second chirp the IQMM correction circuit provides at least second Q?-data and second I?-data.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: August 30, 2022
    Assignee: Texas Instruments Incorporated
    Inventors: Pankaj Gupta, Sriram Murali, Karthik Ramasubramanian
  • Patent number: 11391815
    Abstract: Methods, apparatus, systems and articles of manufacture to compensate radar system calibration are disclosed. A radio-frequency (RF) subsystem having a transmit channel, a receive channel, and a loopback path comprising at least a portion of the transmit channel and at least a portion of the receive channel, a loopback measurer to measure a first loopback response of the RF subsystem for a first calibration configuration of the RF subsystem, and to measure a second loopback response of the RF subsystem for a second calibration configuration of the RF subsystem, and a compensator to adjust at least one of a transmit programmable shifter or a digital front end based on a difference between the first loopback response and the second loopback response to compensate for a loopback response change when the RF subsystem is changed from the first calibration configuration to the second calibration configuration.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: July 19, 2022
    Assignee: Texas Instmments Incorporated
    Inventors: Karthik Subburaj, Shankar Narayanamoorthy, Karthik Ramasubramanian, Anand Gadiyar, Dheeraj Kumar Shetty, Shailesh Joshi
  • Publication number: 20220210249
    Abstract: An example method may include receiving, at a device, a first frame over a wireless network and constructing a preliminary data portion of a second frame. The second frame may be configured for transmission over the wireless network. The method may also include in response to the receiving of the first frame at the device, beginning transmission of a header portion of the second frame over the wireless network and after the beginning transmission of the header portion of the second frame, constructing, based on the preliminary data portion, a finalized data portion of the second frame for transmission over the wireless network.
    Type: Application
    Filed: March 18, 2022
    Publication date: June 30, 2022
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Huizhao WANG, Karthik RAMASUBRAMANIAN, Denis BYKOV, James WOOD, Jun JIN, Lin FANG, Hongping LIU, Benjamin MUNG, Ping LU
  • Patent number: 11366211
    Abstract: A radar system is provided that includes a radar transceiver integrated circuit (IC) configurable to transmit a first frame of chirps, and another radar transceiver IC configurable to transmit a second frame of chirps at a time delay ?T, wherein ?T=Tc/K, K?2 and Tc is an elapsed time from a start of one chirp in the first frame and the second frame and a start of a next chirp in the first frame and the second frame, wherein the radar system is configured to determine a velocity of an object in a field of view of the radar system based on first digital intermediate frequency signals generated responsive to receiving reflected chirps of the first frame and second digital IF signals generated responsive to receiving reflected chirps of the time delayed second frame, wherein the maximum measurable velocity is increased by a factor of K.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: June 21, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sandeep Rao, Karthik Subburaj, Sriram Murali, Karthik Ramasubramanian
  • Publication number: 20220156044
    Abstract: A Radix-3 butterfly circuit includes a first FIFO input configured to couple to a first FIFO. The circuit includes a first adder and first subtractor coupled to the first FIFO input, and a second FIFO input configured to couple to a second FIFO. The circuit includes a second adder and second subtractor coupled to the second FIFO input, and an input terminal coupled to the first adder and first subtractor. The circuit includes a first scaler coupled to the second adder and a first multiplexer, and a second scaler coupled to a third adder and second multiplexer. The circuit includes a third scaler coupled to a third subtractor and third multiplexer. An output of the first multiplexer is coupled to a complex multiplier. An output of the second multiplexer is coupled to a second FIFO output. An output of the third multiplexer is coupled to a first FIFO output.
    Type: Application
    Filed: June 18, 2021
    Publication date: May 19, 2022
    Inventors: Pankaj GUPTA, Karthik SUBBURAJ, Sujaata RAMALINGAM, Karthik RAMASUBRAMANIAN, Indu PRATHAPAN