Patents by Inventor Katherine Yerre Koehler

Katherine Yerre Koehler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220092526
    Abstract: Disclosed are systems, methods and devices for controlling the ordering of medical device supplies. In some aspects, a method includes authorizing a user to submit an order for supplies associated with a prescribed medical device; receiving information associated with the authorized user including (i) eligible items permitted to be purchased such as the user's prescription for the medical device and/or compatibility of components associated with the medical device, and (ii) pricing of the eligible items based on an insurance plan of the user; determining eligibility of the user to purchase the one or more supplies submitted in the order based on analysis the information; and determining payment information for payers associated with purchase of the determined eligible one or more supplies submitted in the order, in which the payment information for payers include a co-payment for the user and a covered payment for a carrier of the insurance plan.
    Type: Application
    Filed: December 6, 2021
    Publication date: March 24, 2022
    Inventors: Brian DALFORNO, Thomas HALL, Matthew Ryan HUGEL, Katherine Yerre KOEHLER
  • Publication number: 20220068452
    Abstract: Provided are systems and methods using which users may learn and become familiar with the effects of various aspects of their lifestyle on their health, e.g., users may learn about how food and/or exercise affects their glucose level and other physiological parameters, as well as overall health. In some cases the user selects a program to try; in other cases, a computing environment embodying the system suggests programs to try, including on the basis of pattern recognition, i.e., by the computing environment determining how a user could improve a detected pattern in some way. In this way, users such as type II diabetics or even users who are only prediabetic or non-diabetic may learn healthy habits to benefit their health.
    Type: Application
    Filed: November 11, 2021
    Publication date: March 3, 2022
    Inventors: Peter C. Simpson, Robert J. Boock, David DeRenzy, Laura J. Dunn, Matthew Lawrence Johnson, Katherine Yerre Koehler, Apurv Ullas Kamath, Andrew Attila Pal, David Price, Eli Reihman, Mark Wu
  • Patent number: 11222724
    Abstract: Disclosed are systems and methods for secure and seamless set up and modification of bolus calculator parameters for a bolus calculator tool by a health care provider (HCP). In one aspect, a method for enabling HCP set up of a bolus calculator includes providing a server accessible by both an HCP and a patient; upon login by the HCP, displaying, or transmitting for display, a fillable form, the fillable form including one or more fields for entry of one or more bolus calculator parameters; receiving data from the fillable form, the data corresponding to one or more bolus calculator parameters; and upon login by the patient, transmitting data to a device associated with the patient, the transmitted data based on the received data, where the transmitted data corresponds to one or more of the bolus calculator parameters in a format suitable for entry to a bolus calculator.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: January 11, 2022
    Assignee: DexCom, Inc.
    Inventors: Anna Leigh Davis, Scott M. Belliveau, Esteban Cabrera, Jr., Alexandra Elena Constantin, Rian Draeger, Peter Galuardi, Hari Hampapuram, Matthew Lawrence Johnson, Apurv Ullas Kamath, Katherine Yerre Koehler, Aarthi Mahalingam, Gary A. Morris, Philip Thomas Pupa, Peter C. Simpson, Brian Christopher Smith, Tomas C. Walker
  • Publication number: 20220000432
    Abstract: Disclosed are systems and methods for generating graphical displays of analyte data and/or health information. In some implementations, the graphical displays are generating based on a self-referential dataset that are modifiable based on identified portions of the data. The modified graphical displays can indicate features in the analyte data of a host.
    Type: Application
    Filed: September 21, 2021
    Publication date: January 6, 2022
    Inventors: Esteban Cabrera, JR., Lauren Danielle Armenta, Scott M. Belliveau, Jennifer Blackwell, Leif N. Bowman, Rian Draeger, Arturo Garcia, Timothy Joseph Goldsmith, John Michael Gray, Andrea Jean Jackson, Apurv Ullas Kamath, Katherine Yerre Koehler, Paul Kramer, Aditya Sagar Mandapaka, Michael Robert Mensinger, Sumitaka Mikami, Gary A. Morris, Hemant Mahendra Nirmal, Paul Noble-Campbell, Philip Thomas Pupa, Eli Reihman, Peter C. Simpson, Brian Christopher Smith, Atiim Joseph Wiley
  • Patent number: 11213204
    Abstract: Methods and apparatus, including computer program products, are provided for remote monitoring. In some example implementations, there is provided a method. The method may include receiving, at a remote monitor, a notification message representative of an event detected, by a server, from analyte sensor data obtained from a receiver monitoring an analyte state of a host; presenting, at the remote monitor, the notification message to activate the remote monitor, wherein the remote monitor is configured by the server to receive the notification message to augment the receiver monitoring of the analyte state of the host; accessing, by the remote monitor, the server, in response to the presenting of the notification message; and receiving, in response to the accessing, information including at least the analyte sensor data. Related systems, methods, and articles of manufacture are also disclosed.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: January 4, 2022
    Assignee: DexCom, Inc.
    Inventors: Michael Robert Mensinger, Eric Cohen, Phil Mayou, Eli Reihman, Katherine Yerre Koehler, Rian Draeger, Angela Marie Traven
  • Patent number: 11197626
    Abstract: The present embodiments provide systems and methods for, among others, tracking sensor insertion locations in a continuous analyte monitoring system. Data gathered from sensor sessions can be used in different ways, such as providing a user with a suggested rotation of insertion locations, correlating data from a given sensor session with sensor accuracy and/or sensor session length, and providing a user with a suggested next insertion location based upon past sensor accuracy and/or sensor session length at that location.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: December 14, 2021
    Assignee: DexCom, Inc.
    Inventors: Katherine Yerre Koehler, Leif N. Bowman, Rian Draeger, Laura Dunn, Eli Reihman
  • Publication number: 20210361163
    Abstract: Methods and apparatus, including computer program products, are provided for remote monitoring. In some example implementations, there is provided a method. The method may include receiving, at a remote monitor, a notification message representative of an event detected, by a server, from analyte sensor data obtained from a receiver monitoring an analyte state of a host; presenting, at the remote monitor, the notification message to activate the remote monitor, wherein the remote monitor is configured by the server to receive the notification message to augment the receiver monitoring of the analyte state of the host; accessing, by the remote monitor, the server, in response to the presenting of the notification message; and receiving, in response to the accessing, information including at least the analyte sensor data. Related systems, methods, and articles of manufacture are also disclosed.
    Type: Application
    Filed: August 6, 2021
    Publication date: November 25, 2021
    Inventors: Michael Robert Mensinger, Eric Cohen, Phil Mayou, Eli Reihman, Katherine Yerre Koehler, Rian Draeger, Angela Marie Traven
  • Patent number: 11183298
    Abstract: Disclosed are systems and methods for secure and seamless set up and modification of bolus calculator parameters for a bolus calculator tool by a health care provider (HCP). In one aspect, a method for enabling HCP set up of a bolus calculator includes providing a server accessible by both an HCP and a patient; upon login by the HCP, displaying, or transmitting for display, a fillable form, the fillable form including one or more fields for entry of one or more bolus calculator parameters; receiving data from the fillable form, the data corresponding to one or more bolus calculator parameters; and upon login by the patient, transmitting data to a device associated with the patient, the transmitted data based on the received data, where the transmitted data corresponds to one or more of the bolus calculator parameters in a format suitable for entry to a bolus calculator.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: November 23, 2021
    Assignee: DexCom, Inc.
    Inventors: Anna Leigh Davis, Scott M. Belliveau, Esteban Cabrera, Jr., Alexandra Elena Constantin, Rian Draeger, Peter Galuardi, Hari Hampapuram, Matthew Lawrence Johnson, Apurv Ullas Kamath, Katherine Yerre Koehler, Aarthi Mahalingam, Gary A. Morris, Philip Thomas Pupa, Peter C. Simpson, Brian Christopher Smith, Tomas C. Walker
  • Patent number: 11160452
    Abstract: Methods and apparatus, including computer program products, are provided for remote monitoring. In some example implementations, there is provided a method. The method may include receiving, at a remote monitor, a notification message representative of an event detected, by a server, from analyte sensor data obtained from a receiver monitoring an analyte state of a host; presenting, at the remote monitor, the notification message to activate the remote monitor, wherein the remote monitor is configured by the server to receive the notification message to augment the receiver monitoring of the analyte state of the host; accessing, by the remote monitor, the server, in response to the presenting of the notification message; and receiving, in response to the accessing, information including at least the analyte sensor data. Related systems, methods, and articles of manufacture are also disclosed.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: November 2, 2021
    Assignee: DexCom, Inc.
    Inventors: Michael Robert Mensinger, Eric Cohen, Phil Mayou, Eli Reihman, Katherine Yerre Koehler, Rian Draeger, Angela Marie Traven
  • Patent number: 11154253
    Abstract: Disclosed are systems and methods for generating graphical displays of analyte data and/or health information. In some implementations, the graphical displays are generating based on a self-referential dataset that are modifiable based on identified portions of the data. The modified graphical displays can indicate features in the analyte data of a host.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: October 26, 2021
    Assignee: DexCom, Inc.
    Inventors: Esteban Cabrera, Jr., Lauren Danielle Armenta, Scott M. Belliveau, Jennifer Blackwell, Leif N. Bowman, Rian Draeger, Arturo Garcia, Timothy Joseph Goldsmith, John Michael Gray, Andrea Jean Jackson, Apurv Ullas Kamath, Katherine Yerre Koehler, Paul Kramer, Aditya Sagar Mandapaka, Michael Robert Mensinger, Sumitaka Mikami, Gary A. Morris, Hemant Mahendra Nirmal, Paul Noble-Campbell, Philip Thomas Pupa, Eli Reihman, Peter C. Simpson, Brian Christopher Smith, Atiim Joseph Wiley
  • Publication number: 20210316070
    Abstract: Methods, devices and systems are disclosed for inter-app communications between software applications on a mobile communications device. In one aspect, a computer-readable medium on a mobile computing device comprising an inter-application communication data structure to facilitate transitioning and distributing data between software applications in a shared app group for an operating system of the mobile computing device includes a scheme field of the data structure providing a scheme id associated with a target software app to transition to from a source software app, wherein the scheme id is listed on a scheme list stored with the source software app; and a payload field of the data structure providing data and/or an identification where to access data in a shared file system accessible to the software applications in the shared app group, wherein the payload field is encrypted.
    Type: Application
    Filed: March 16, 2021
    Publication date: October 14, 2021
    Inventors: Gary A. Morris, Scott M. Belliveau, Esteban Cabrera, JR., Rian Draeger, Laura J. Dunn, Timothy Joseph Goldsmith, Hari Hampapuram, Christopher Robert Hannemann, Apurv Ullas Kamath, Katherine Yerre Koehler, Patrick Wile McBride, Michael Robert Mensinger, Francis William Pascual, Philip Mansiel Pellouchoud, Nicholas Polytaridis, Philip Thomas Pupa, Anna Leigh Davis, Kevin Shoemaker, Brian Christopher Smith, Benjamin Elrod West, Atiim Joseph Wiley
  • Patent number: 11141116
    Abstract: Disclosed are systems and methods for generating graphical displays of analyte data and/or health information. In some implementations, the graphical displays are generating based on a self-referential dataset that are modifiable based on identified portions of the data. The modified graphical displays can indicate features in the analyte data of a host.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: October 12, 2021
    Assignee: DexCom, Inc.
    Inventors: Esteban Cabrera, Jr., Lauren Danielle Armenta, Scott M. Belliveau, Jennifer Blackwell, Leif N. Bowman, Rian Draeger, Arturo Garcia, Timothy Joseph Goldsmith, John Michael Gray, Andrea Jean Jackson, Apurv Ullas Kamath, Katherine Yerre Koehler, Paul Kramer, Aditya Sagar Mandapaka, Michael Robert Mensinger, Sumitaka Mikami, Gary A. Morris, Hemant Mahendra Nirmal, Paul Noble-Campbell, Philip Thomas Pupa, Eli Reihman, Peter C. Simpson, Brian Christopher Smith, Atiim Joseph Wiley
  • Patent number: 11109757
    Abstract: Methods and apparatus, including computer program products, are provided for remote monitoring. In some example implementations, there is provided a method. The method may include receiving, at a remote monitor, a notification message representative of an event detected, by a server, from analyte sensor data obtained from a receiver monitoring an analyte state of a host; presenting, at the remote monitor, the notification message to activate the remote monitor, wherein the remote monitor is configured by the server to receive the notification message to augment the receiver monitoring of the analyte state of the host; accessing, by the remote monitor, the server, in response to the presenting of the notification message; and receiving, in response to the accessing, information including at least the analyte sensor data. Related systems, methods, and articles of manufacture are also disclosed.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: September 7, 2021
    Assignee: DexCom, Inc.
    Inventors: Michael Robert Mensinger, Eric Cohen, Phil Mayou, Eli Reihman, Katherine Yerre Koehler, Rian Draeger, Angela Marie Traven
  • Publication number: 20210260289
    Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
    Type: Application
    Filed: December 7, 2020
    Publication date: August 26, 2021
    Inventors: Apurv Ullas Kamath, Derek James Escobar, Sumitaka Mikami, Hari Hampapuram, Benjamin Elrod West, Nathanael Paul, Naresh C. Bhavaraju, Michael Robert Mensinger, Gary A. Morris, Andrew Attila Pal, Eli Reihman, Scott M. Belliveau, Katherine Yerre Koehler, Nicholas Polytaridis, Rian Draeger, Jorge Valdes, David Price, Peter C. Simpson, Edward Sweeney
  • Publication number: 20210260288
    Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
    Type: Application
    Filed: December 7, 2020
    Publication date: August 26, 2021
    Inventors: Apurv Ullas Kamath, Derek James Escobar, Sumitaka Mikami, Hari Hampapuram, Benjamin Elrod West, Nathanael Paul, Naresh C. Bhavaraju, Michael Robert Mensinger, Gary A. Morris, Andrew Attila Pal, Eli Reihman, Scott M. Belliveau, Katherine Yerre Koehler, Nicholas Polytaridis, Rian Draeger, Jorge Valdes, David Price, Peter C. Simpson, Edward Sweeney
  • Publication number: 20210259591
    Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
    Type: Application
    Filed: December 7, 2020
    Publication date: August 26, 2021
    Inventors: Apurv Ullas Kamath, Derek James Escobar, Sumitaka Mikami, Hari Hampapuram, Benjamin Elrod West, Nathanael Paul, Naresh C. Bhavaraju, Michael Robert Mensinger, Gary A. Morris, Andrew Attila Pal, Eli Reihman, Scott M. Belliveau, Katherine Yerre Koehler, Nicholas Polytaridis, Rian Draeger, Jorge Valdes, David Price, Peter C. Simpson, Edward Sweeney
  • Publication number: 20210260287
    Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
    Type: Application
    Filed: December 7, 2020
    Publication date: August 26, 2021
    Inventors: Apurv Ullas Kamath, Derek James Escobar, Sumitaka Mikami, Hari Hampapuram, Benjamin Elrod West, Nathanael Paul, Naresh C. Bhavaraju, Michael Robert Mensinger, Gary A. Morris, Andrew Attila Pal, Eli Reihman, Scott M. Belliveau, Katherine Yerre Koehler, Nicholas Polytaridis, Rian Draeger, Jorge Valdes, David Price, Peter C. Simpson, Edward Sweeney
  • Publication number: 20210260286
    Abstract: Machine learning in an artificial pancreas is described. An artificial pancreas system may include a wearable glucose monitoring device, an insulin delivery system, and a computing device. Broadly speaking, the wearable glucose monitoring device provides glucose measurements of a person continuously. The artificial pancreas algorithm, which may be implemented at the computing device, determines doses of insulin to deliver to the person based on a variety of aspects for the purpose of maintaining the person's glucose within a target range, as indicated by those glucose measurements. The insulin delivery system then delivers those determined doses to the person. As the artificial pancreas algorithm determines insulin doses for the person over time and effectiveness of the insulin doses to maintain the person's glucose level in the target range is observed, an underlying model of the artificial pancreas algorithm may be updated to better determine insulin doses.
    Type: Application
    Filed: December 7, 2020
    Publication date: August 26, 2021
    Inventors: Apurv Ullas Kamath, Derek James Escobar, Sumitaka Mikami, Hari Hampapuram, Benjamin Elrod West, Nathanael Paul, Naresh C. Bhavaraju, Michael Robert Mensinger, Gary A. Morris, Andrew Attila Pal, Eli Reihman, Scott M. Belliveau, Katherine Yerre Koehler, Nicholas Polytaridis, Rian Draeger, Jorge Valdes, David Price, Peter C. Simpson, Edward Sweeney
  • Publication number: 20210142912
    Abstract: Systems and methods disclosed provide ways for Health Care Professionals (HCPs) to be involved in initial patient system set up so that the data received is truly transformative, such that the patient not just understands what all the various numbers mean but also how the data can be used. For example, in one implementation, a CGM device is configured for use by a HCP, and includes a housing and a circuit configured to receive a signal from a transmitter coupled to an indwelling glucose sensor. A calibration module converts the received signal into clinical units. A user interface is provided that is configured to display a measured glucose concentration in the clinical units. The user interface is further configured to receive input data about a patient level, where the input data about the patient level causes the device to operate in a mode appropriate to the patient level.
    Type: Application
    Filed: January 7, 2021
    Publication date: May 13, 2021
    Inventors: Scott M. Belliveau, Naresh C. Bhavaraju, Darin Edward Chum Dew, Eric Cohen, Anna Leigh Davis, Mark Dervaes, Laura J. Dunn, Minda McDorman Grucela, Hari Hampapuram, Matthew Lawrence Johnson, Apurv Ullas Kamath, Steven David King, Katherine Yerre Koehler, Aditya Sagar Mandapaka, Zebediah L. McDaniel, Sumitaka Mikami, Subrai Girish Pai, Philip Mansiel Pellouchoud, Stephen Alan Reichert, Eli Reihman, Peter C. Simpson, Brian Christopher Smith, Stephen J. Vanslyke, Robert Patrick Van Tassel, Matthew D. Wightlin, Richard C. Yang, James Stephen Amidei, David Derenzy, Benjamin Elrod West, Vincent Crabtree, Michael Levozier Moore, Douglas William Burnette, Alexandra Elena Constantin, Nicholas Polytaridis, Dana Charles Cambra, Abhishek Sharma, Kho Braun, Patrick Wile McBride
  • Patent number: 10993617
    Abstract: Methods and apparatus, including computer program products, are provided for remote monitoring. In some example implementations, there is provided a method. The method may include receiving, at a remote monitor, a notification message representative of an event detected, by a server, from analyte sensor data obtained from a receiver monitoring an analyte state of a host; presenting, at the remote monitor, the notification message to activate the remote monitor, wherein the remote monitor is configured by the server to receive the notification message to augment the receiver monitoring of the analyte state of the host; accessing, by the remote monitor, the server, in response to the presenting of the notification message; and receiving, in response to the accessing, information including at least the analyte sensor data. Related systems, methods, and articles of manufacture are also disclosed.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: May 4, 2021
    Assignee: DexCom, Inc.
    Inventors: Michael Robert Mensinger, Eric Cohen, Phil Mayou, Eli Reihman, Katherine Yerre Koehler, Rian Draeger, Angela Marie Traven