Patents by Inventor Kathryn M. Stephens

Kathryn M. Stephens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220243261
    Abstract: A method including (a) providing an amplification reagent including an array of sites, and a solution having different target nucleic acids; and (b) reacting the amplification reagent to produce amplification sites each having a clonal population of amplicons from a target nucleic acid from the solution. The reacting can include simultaneously transporting the nucleic acids to the sites at an average transport rate, and amplifying the nucleic acids that transport to the sites at an average amplification rate, wherein the average amplification rate exceeds the average transport rate. The reacting can include producing a first amplicon from a nucleic acid that transports to each of the sites, and producing subsequent amplicons from the nucleic acid or from the first amplicon, wherein the average rate at which the subsequent amplicons are generated exceeds the average rate at which the first amplicon is generated.
    Type: Application
    Filed: January 13, 2022
    Publication date: August 4, 2022
    Applicant: Illumina, Inc.
    Inventors: Min-Jui Richard Shen, Jonathan Mark Boutell, Kathryn M. Stephens, Mostafa Ronaghi, Kevin L. Gunderson, Bala Murali Venkatesan, M. Shane Bowen, Kandaswamy Vijayan
  • Patent number: 11254976
    Abstract: A method including (a) providing an amplification reagent including an array of sites, and a solution having different target nucleic acids; and (b) reacting the amplification reagent to produce amplification sites each having a clonal population of amplicons from a target nucleic acid from the solution. The reacting can include simultaneously transporting the nucleic acids to the sites at an average transport rate, and amplifying the nucleic acids that transport to the sites at an average amplification rate, wherein the average amplification rate exceeds the average transport rate. The reacting can include producing a first amplicon from a nucleic acid that transports to each of the sites, and producing subsequent amplicons from the nucleic acid or from the first amplicon, wherein the average rate at which the subsequent amplicons are generated exceeds the average rate at which the first amplicon is generated.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: February 22, 2022
    Assignee: Illumina, Inc.
    Inventors: Min-Jui Richard Shen, Jonathan Mark Boutell, Kathryn M. Stephens, Mostafa Ronaghi, Kevin L. Gunderson, Bala Murali Venkatesan, M. Shane Bowen, Kandaswamy Vijayan
  • Publication number: 20210130885
    Abstract: Presented are methods and compositions for spatial detection and analysis of nucleic acids in a tissue sample. The methods can enable the characterization of transcriptomes and/or genomic variations in tissues while preserving spatial information about the tissue.
    Type: Application
    Filed: January 11, 2021
    Publication date: May 6, 2021
    Inventors: Alex So, Li Liu, Min-Jui Richard Shen, Neeraj Salathia, Kathryn M. Stephens, Anne Jager, Timothy Wilson, Justin Fullerton, Sean M. Ramirez, Shannon Kaplan, Rigo Pantoja, Bala Murali Venkatesan, Steven Modiano
  • Patent number: 10913975
    Abstract: Presented are methods and compositions for spatial detection and analysis of nucleic acids in a tissue sample. The methods can enable the characterization of transcriptomes and/or genomic variations in tissues while preserving spatial information about the tissue.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: February 9, 2021
    Assignee: Illumina, Inc.
    Inventors: Alex So, Li Liu, Min-Jui Richard Shen, Neeraj Salathia, Kathryn M. Stephens, Anne Jager, Timothy Wilson, Justin Fullerton, Sean M. Ramirez, Shannon Kaplan, Rigo Pantoja, Bala Murali Venkatesan, Steven Modiano
  • Publication number: 20200224268
    Abstract: Embodiments disclosed herein provide methods for constructing a DNA profile comprising: providing a nucleic acid sample, amplifying the nucleic acid sample with a plurality of primers that specifically hybridize to at least one target sequence comprising a SNP and at least one target sequence comprising a tandem repeat, and determining the genotypes of the at least one SNP and at least one tandem repeat in the amplification products, thereby constructing the DNA profile of the nucleic acid sample. Embodiments disclosed herein further provide a plurality of primers that specifically hybridize to at least one short target sequence and at least one long target sequence in a nucleic acid sample, wherein amplifying the nucleic acid sample using the plurality of primers in a single reaction results in a short amplification product and a long amplification product, wherein each of the plurality of primers comprises one or more tag sequences.
    Type: Application
    Filed: September 19, 2019
    Publication date: July 16, 2020
    Inventors: Kathryn M. Stephens, Cydne Holt, Carey Davis, Anne Jager, Paulina Walichiewicz, Yonmee Han, David Silva, Min-Jui Richard Shen, Sasan Amini, Frank J. Steemers
  • Publication number: 20200040386
    Abstract: A method including (a) providing an amplification reagent including an array of sites, and a solution having different target nucleic acids; and (b) reacting the amplification reagent to produce amplification sites each having a clonal population of amplicons from a target nucleic acid from the solution. The reacting can include simultaneously transporting the nucleic acids to the sites at an average transport rate, and amplifying the nucleic acids that transport to the sites at an average amplification rate, wherein the average amplification rate exceeds the average transport rate. The reacting can include producing a first amplicon from a nucleic acid that transports to each of the sites, and producing subsequent amplicons from the nucleic acid or from the first amplicon, wherein the average rate at which the subsequent amplicons are generated exceeds the average rate at which the first amplicon is generated.
    Type: Application
    Filed: August 19, 2019
    Publication date: February 6, 2020
    Applicant: Illumina, Inc.
    Inventors: Min-Jui Richard Shen, Jonathan Mark Boutell, Kathryn M. Stephens, Mostafa Ronaghi, Kevin L. Gunderson, Bala Murali Venkatesan, M. Shane Bowen, Kandaswamy Vijayan
  • Patent number: 10422002
    Abstract: Embodiments disclosed herein provide methods for constructing a DNA profile comprising: providing a nucleic acid sample, amplifying the nucleic acid sample with a plurality of primers that specifically hybridize to at least one target sequence comprising a SNP and at least one target sequence comprising a tandem repeat, and determining the genotypes of the at least one SNP and at least one tandem repeat in the amplification products, thereby constructing the DNA profile of the nucleic acid sample. Embodiments disclosed herein further provide a plurality of primers that specifically hybridize to at least one short target sequence and at least one long target sequence in a nucleic acid sample, wherein amplifying the nucleic acid sample using the plurality of primers in a single reaction results in a short amplification product and a long amplification product, wherein each of the plurality of primers comprises one or more tag sequences.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: September 24, 2019
    Assignee: ILLUMINA, INC.
    Inventors: Kathryn M. Stephens, Cydne Holt, Carey Davis, Anne Jager, Paulina Walichiewicz, Yonmee Han, David Silva, Min-Jui Richard Shen, Sasan Amini, Frank J. Steemers
  • Patent number: 10385384
    Abstract: A method including (a) providing an amplification reagent including an array of sites, and a solution having different target nucleic acids; and (b) reacting the amplification reagent to produce amplification sites each having a clonal population of amplicons from a target nucleic acid from the solution. The reacting can include simultaneously transporting the nucleic acids to the sites at an average transport rate, and amplifying the nucleic acids that transport to the sites at an average amplification rate, wherein the average amplification rate exceeds the average transport rate. The reacting can include producing a first amplicon from a nucleic acid that transports to each of the sites, and producing subsequent amplicons from the nucleic acid or from the first amplicon, wherein the average rate at which the subsequent amplicons are generated exceeds the average rate at which the first amplicon is generated.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: August 20, 2019
    Assignee: Illumina, Inc.
    Inventors: Min-Jui Richard Shen, Jonathan Mark Boutell, Kathryn M. Stephens, Mostafa Ronaghi, Kevin L. Gunderson, Bala Murali Venkatesan, M. Shane Bowen, Kandaswamy Vijayan
  • Publication number: 20180245142
    Abstract: Presented are methods and compositions for spatial detection and analysis of nucleic acids in a tissue sample. The methods can enable the characterization of transcriptomes and/or genomic variations in tissues while preserving spatial information about the tissue.
    Type: Application
    Filed: July 21, 2016
    Publication date: August 30, 2018
    Inventors: Alex SO, Li LIU, Min-Jui Richard SHEN, Neeraj SALATHIA, Kathryn M. STEPHENS, Anne JAGER, Timothy WILSON, Justin FULLERTON, Sean M. RAMIREZ, Shannon KAPLAN, Rigo PANTOJA, Bala Murali VENKATESAN, Steven MODIANO
  • Patent number: 10047359
    Abstract: The present system provides novel methods and compositions for selecting a particular strand of RNA and/or producing a cDNA library that results in an unbiased representation of RNA in a sample.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: August 14, 2018
    Assignee: ILLUMINA, INC.
    Inventors: Kathryn M. Stephens, Marcus Burch
  • Publication number: 20170335380
    Abstract: A method including (a) providing an amplification reagent including an array of sites, and a solution having different target nucleic acids; and (b) reacting the amplification reagent to produce amplification sites each having a clonal population of amplicons from a target nucleic acid from the solution. The reacting can include simultaneously transporting the nucleic acids to the sites at an average transport rate, and amplifying the nucleic acids that transport to the sites at an average amplification rate, wherein the average amplification rate exceeds the average transport rate. The reacting can include producing a first amplicon from a nucleic acid that transports to each of the sites, and producing subsequent amplicons from the nucleic acid or from the first amplicon, wherein the average rate at which the subsequent amplicons are generated exceeds the average rate at which the first amplicon is generated.
    Type: Application
    Filed: August 8, 2017
    Publication date: November 23, 2017
    Applicant: Illumina, Inc.
    Inventors: Min-Jui Richard Shen, Jonathan Mark Boutell, Kathryn M. Stephens, Mostafa Ronaghi, Kevin L. Gunderson, Bala Murali Venkatesan, M. Shane Bowen, Kandaswamy Vijayan
  • Patent number: 9758816
    Abstract: A method including (a) providing an amplification reagent including an array of sites, and a solution having different target nucleic acids; and (b) reacting the amplification reagent to produce amplification sites each having a clonal population of amplicons from a target nucleic acid from the solution. The reacting can include simultaneously transporting the nucleic acids to the sites at an average transport rate, and amplifying the nucleic acids that transport to the sites at an average amplification rate, wherein the average amplification rate exceeds the average transport rate. The reacting can include producing a first amplicon from a nucleic acid that transports to each of the sites, and producing subsequent amplicons from the nucleic acid or from the first amplicon, wherein the average rate at which the subsequent amplicons are generated exceeds the average rate at which the first amplicon is generated.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: September 12, 2017
    Assignee: Illumina, Inc.
    Inventors: Min-Jui Richard Shen, Jonathan Mark Boutell, Kathryn M. Stephens, Mostafa Ronaghi, Kevin Gunderson, Bala Murali Venkatesan, M. Shane Bowen, Kandaswamy Vijayan
  • Publication number: 20160194628
    Abstract: The present system provides novel methods and compositions for selecting a particular strand of RNA and/or producing a cDNA library that results in an unbiased representation of RNA in a sample.
    Type: Application
    Filed: January 12, 2016
    Publication date: July 7, 2016
    Inventors: Kathryn M. Stephens, Marcus Burch
  • Publication number: 20160053310
    Abstract: A method including (a) providing an amplification reagent including an array of sites, and a solution having different target nucleic acids; and (b) reacting the amplification reagent to produce amplification sites each having a clonal population of amplicons from a target nucleic acid from the solution. The reacting can include simultaneously transporting the nucleic acids to the sites at an average transport rate, and amplifying the nucleic acids that transport to the sites at an average amplification rate, wherein the average amplification rate exceeds the average transport rate. The reacting can include producing a first amplicon from a nucleic acid that transports to each of the sites, and producing subsequent amplicons from the nucleic acid or from the first amplicon, wherein the average rate at which the subsequent amplicons are generated exceeds the average rate at which the first amplicon is generated.
    Type: Application
    Filed: October 9, 2015
    Publication date: February 25, 2016
    Applicant: ILLUMINA, INC.
    Inventors: Min-Jui Richard Shen, Jonathan Mark Boutell, Kathryn M. Stephens, Mostafa Ronaghi, Kevin Gunderson, Bala Murali Venkatesan, M. Shane Bowen, Kandaswamy Vijayan
  • Patent number: 9255265
    Abstract: The present system provides novel methods and compositions for selecting a particular strand of RNA and/or producing a cDNA library that results in an unbiased representation of RNA in a sample.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 9, 2016
    Assignee: Illumina, Inc.
    Inventors: Kathryn M. Stephens, Marcus Burch
  • Patent number: 9169513
    Abstract: A method including (a) providing an amplification reagent including an array of sites, and a solution having different target nucleic acids; and (b) reacting the amplification reagent to produce amplification sites each having a clonal population of amplicons from a target nucleic acid from the solution. The reacting can include simultaneously transporting the nucleic acids to the sites at an average transport rate, and amplifying the nucleic acids that transport to the sites at an average amplification rate, wherein the average amplification rate exceeds the average transport rate. The reacting can include producing a first amplicon from a nucleic acid that transports to each of the sites, and producing subsequent amplicons from the nucleic acid or from the first amplicon, wherein the average rate at which the subsequent amplicons are generated exceeds the average rate at which the first amplicon is generated.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: October 27, 2015
    Assignee: ILLUMINA, INC.
    Inventors: Min-Jui Richard Shen, Jonathan Mark Boutell, Kathryn M. Stephens, Mostafa Ronaghi, Kevin Gunderson, Bala Murali Venkatesan, M. Shane Bowen, Kandaswamy Vijayan
  • Publication number: 20150232929
    Abstract: Embodiments disclosed herein provide methods for constructing a DNA profile comprising: providing a nucleic acid sample, amplifying the nucleic acid sample with a plurality of primers that specifically hybridize to at least one target sequence comprising a SNP and at least one target sequence comprising a tandem repeat, and determining the genotypes of the at least one SNP and at least one tandem repeat in the amplification products, thereby constructing the DNA profile of the nucleic acid sample. Embodiments disclosed herein further provide a plurality of primers that specifically hybridize to at least one short target sequence and at least one long target sequence in a nucleic acid sample, wherein amplifying the nucleic acid sample using the plurality of primers in a single reaction results in a short amplification product and a long amplification product, wherein each of the plurality of primers comprises one or more tag sequences.
    Type: Application
    Filed: February 13, 2015
    Publication date: August 20, 2015
    Applicant: ILLUMINA, INC.
    Inventors: Kathryn M. Stephens, Cydne Holt, Carey Davis, Anne Jager, Paulina Walichiewicz, Yonmee Han, David Silva, Min-Jui Richard Shen, Sasan Amini, Frank J. Steemers
  • Publication number: 20150080230
    Abstract: A method including (a) providing an amplification reagent including an array of sites, and a solution having different target nucleic acids; and (b) reacting the amplification reagent to produce amplification sites each having a clonal population of amplicons from a target nucleic acid from the solution. The reacting can include simultaneously transporting the nucleic acids to the sites at an average transport rate, and amplifying the nucleic acids that transport to the sites at an average amplification rate, wherein the average amplification rate exceeds the average transport rate. The reacting can include producing a first amplicon from a nucleic acid that transports to each of the sites, and producing subsequent amplicons from the nucleic acid or from the first amplicon, wherein the average rate at which the subsequent amplicons are generated exceeds the average rate at which the first amplicon is generated.
    Type: Application
    Filed: October 13, 2014
    Publication date: March 19, 2015
    Inventors: Min-Jui Richard Shen, Jonathan Mark Boutell, Kathryn M. Stephens, Mostafa Ronaghi, Kevin Gunderson, Bala Murali Venkatesan, M. Shane Bowen, Kandaswamy Vijayan
  • Patent number: 8895249
    Abstract: A method including (a) providing an amplification reagent including an array of sites, and a solution having different target nucleic acids; and (b) reacting the amplification reagent to produce amplification sites each having a clonal population of amplicons from a target nucleic acid from the solution. The reacting can include simultaneously transporting the nucleic acids to the sites at an average transport rate, and amplifying the nucleic acids that transport to the sites at an average amplification rate, wherein the average amplification rate exceeds the average transport rate. The reacting can include producing a first amplicon from a nucleic acid that transports to each of the sites, and producing subsequent amplicons from the nucleic acid or from the first amplicon, wherein the average rate at which the subsequent amplicons are generated exceeds the average rate at which the first amplicon is generated.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: November 25, 2014
    Assignee: Illumina, Inc.
    Inventors: Min-Jui Richard Shen, Jonathan Mark Boutell, Kathryn M. Stephens, Mostafa Ronaghi, Kevin Gunderson, Bala Murali Venkatesan, M. Shane Bowen, Kandaswamy Vijayan
  • Publication number: 20140274807
    Abstract: The present system provides novel methods and compositions for selecting a particular strand of RNA and/or producing a cDNA library that results in an unbiased representation of RNA in a sample.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Illumina, Inc.
    Inventors: Kathryn M. STEPHENS, Marcus BURCH