Patents by Inventor Katrin Sternberg

Katrin Sternberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11617811
    Abstract: A sterile container includes a container pan, a container cover, a closure for closing the sterile container, and a seal or sealing element between the container pan and the container cover. The seal or sealing element is vapor-permeable.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: April 4, 2023
    Assignee: Aesculap AG
    Inventors: Matthias Henke, Katrin Sternberg
  • Publication number: 20200268920
    Abstract: A sterile container includes a container pan, a container cover, a closure for closing the sterile container, and a seal or sealing element between the container pan and the container cover. The seal or sealing element is vapor-permeable.
    Type: Application
    Filed: September 4, 2018
    Publication date: August 27, 2020
    Inventors: MATTHIAS HENKE, KATRIN STERNBERG
  • Patent number: 10342703
    Abstract: The invention relates to an ocular implant for treating glaucoma. The problem addressed by the invention is to make it possible to drain aqueous humor from the anterior chamber of the eye into the subconjunctival or suprachoroidal space in order to lower the intraocular pressure in glaucoma cases. The device is to do away with the drawbacks of known valve mechanisms and should be economical to produce. In order to solve said problem, the glaucoma drainage implant is composed of an elongate, hollow main member in which a flow-limiting membrane is arranged in the inflow region.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: July 9, 2019
    Assignee: Universitaet Rostock
    Inventors: Stefan Siewert, Frank Luderer, Wolfram Schmidt, Marian Loebler, Rudolf Guthoff, Katrin Sternberg, Klaus-Peter Schmitz
  • Patent number: 10016775
    Abstract: A device for coating a stent, including a holder for the stent, a spraying unit comprising a spray mandrel and an air nozzle. The spray mandrel, the air nozzle and the holder are configured and disposed relative to each other such that the spray mandrel projects from one side into the stent during coating and the air nozzle projects into the stent from the opposing side. A method for coating a stent employs the device. Stents that can be obtained according to the method.
    Type: Grant
    Filed: January 19, 2013
    Date of Patent: July 10, 2018
    Assignee: CORTRONIK GMBH
    Inventors: Katrin Sternberg, Heyo K. Kroemer, Klaus-Peter Schmitz, Werner Weitschies, Niels Grabow, Claus Harder, Peter Littwin, Dailbor Bajer
  • Patent number: 9592325
    Abstract: Absorbable stents and absorbable stent coatings have been developed with improved properties. These devices preferably comprise biocompatible copolymers or homopolymers of 4-hydroxybutyrate, and optionally poly-L-lactic acid and other absorbable polymers and additives. Compositions of these materials can be used to make absorbable stents that provide advantageous radial strengths, resistance to recoil and creep, can be plastically expanded on a balloon catheter, and can be deployed rapidly in vivo. Stent coatings derived from these materials provide biocompatible, uniform coatings that are ductile, and can be expanded without the coating cracking and/or delaminating and can be used as a coating matrix for drug incorporation.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: March 14, 2017
    Assignee: Tepha, Inc.
    Inventors: Klaus-Peter Schmitz, Detlef Behrend, Katrin Sternberg, Niels Grabow, David Martin, Simon Williams
  • Publication number: 20160367403
    Abstract: The invention relates to an ocular implant for treating glaucoma. The problem addressed by the invention is to make it possible to drain aqueous humor from the anterior chamber of the eye into the subconjunctival or suprachoroidal space in order to lower the intraocular pressure in glaucoma cases. The device is to do away with the drawbacks of known valve mechanisms and should be economical to produce. In order to solve said problem, the glaucoma drainage implant is composed of an elongate, hollow main member in which a flow-limiting membrane is arranged in the inflow region.
    Type: Application
    Filed: February 23, 2015
    Publication date: December 22, 2016
    Applicant: UNIVERSITAET ROSTOCK
    Inventors: Stefan SIEWERT, Frank LUDERER, Wolfram SCHMIDT, Marian LOEBLER, Rudolf GUTHOFF, Katrin STERNBERG, Klaus-Peter SCHMITZ
  • Patent number: 9162010
    Abstract: Drug delivery systems and biocompatible coatings for use with implantable stimulation devices such as cochlear implants have been developed. These drug delivery systems and coatings comprise polyhydroxyalkanoate (PHA) polymers and copolymers. The drug delivery systems may be used to deliver pharmacologically active substances, for example, directly from a cochlear implant to the inner ear. The coatings can impart lubricity to cochlear devices for ease of insertion of the electrodes. In the preferred embodiment, the drug delivery system comprises a polyhydroxyalkanoate polymer, and in the most preferred embodiment, the PHA polymer comprises poly(4-hydroxybutyrate) (P(4HB)) or copolymer thereof. A particularly preferred embodiment is where the silicone sheath of the cochlear implant electrodes has been surface modified, and coated with P(4HB), and the P(4HB) either contains a pharmacologically active substance or has been coated with such a substance.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: October 20, 2015
    Assignee: Tepha, Inc.
    Inventors: Thomas Lenarz, Klaus-Peter Schmitz, Detlef Behrend, Katrin Sternberg, Simon Williams, David Martin
  • Publication number: 20150209813
    Abstract: The invention relates to a device for coating a stent, comprising a holder for the stent, a spraying unit comprising a spray mandrel and an air nozzle. The spray mandrel, the air nozzle and the holder are designed and disposed relative to each other such that the spray mandrel projects from one side into the stent during coating and the air nozzle projects into the stent from the opposing side. The invention further provides a method for coating a stent which employs the device according to the invention. Finally, the invention relates to stents that can be obtained according to the method.
    Type: Application
    Filed: January 19, 2013
    Publication date: July 30, 2015
    Applicant: CORTRONIK GMBH
    Inventors: Katrin Sternberg, Heyo K. Kroemer, Klaus-Peter Schmitz, Werner Weitschies, Niels Grabow, Claus Harder, Peter Littwin, Dailbor Bajer
  • Patent number: 8979921
    Abstract: Absorbable stents and absorbable stent coatings have been developed with improved properties. These devices preferably comprise biocompatible copolymers or homopolymers of 4-hydroxybutyrate, and optionally polylactic acid and other absorbable polymers and additives. Compositions of these materials can be used to make absorbable stents that provide advantageous radial strengths, resistance to recoil and creep, can be plastically expanded on a balloon catheter, and can be deployed rapidly in vivo. Stent coatings derived from these materials provide biocompatible, uniform coatings that are ductile, and can be expanded without the coating cracking and/or delaminating and can be used as a coating matrix for drug incorporation.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: March 17, 2015
    Assignee: Tepha, Inc.
    Inventors: Klaus-Peter Schmitz, Detlef Behrend, Katrin Sternberg, Niels Grabow, David P. Martin, Simon F. Williams
  • Patent number: 8961591
    Abstract: Absorbable stents and absorbable stent coatings have been developed with improved properties. These devices preferably comprise biocompatible copolymers or homopolymers of 4-hydroxybutyrate, and optionally poly-L-lactic acid and other absorbable polymers and additives. Compositions of these materials can be used to make absorbable stents that provide advantageous radial strengths, resistance to recoil and creep, can be plastically expanded on a balloon catheter, and can be deployed rapidly in vivo. Stent coatings derived from these materials provide biocompatible, uniform coatings that are ductile, and can be expanded without the coating cracking and/or delarmnating and can be used as a coating matrix for drug incorporation.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: February 24, 2015
    Assignee: Tepha, Inc.
    Inventors: Klaus-Peter Schmitz, Detlef Behrend, Katrin Sternberg, Niels Grabow, David P. Martin, Simon F. Williams
  • Patent number: 8774892
    Abstract: An electrode arrangement for sensing electrical activity in target tissue is described. A support electrode has an elongate electrode body with a base end and a penetrating end for insertion into the target tissue. A fixation electrode has an elongate electrode body with a base end and a penetrating end at an angle to the electrode body. The electrodes are joined together with their electrode bodies in parallel so that the penetrating end of the fixation electrode penetrates a fixed distance into the target tissue so that at least one of the electrodes senses electrical activity in the target tissue.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: July 8, 2014
    Assignee: MED-EL Elektromedizinische Geraete GmbH
    Inventors: Detlef Behrend, Klaus-Peter Schmitz, Hans Wilhelm Pau, Katrin Sternberg, Wolfram Schmidt
  • Patent number: 8725227
    Abstract: The invention relates to an electrode arrangement and a measuring device for measuring the action flow and/or the action potential of an electrically active tissue. The aim of the invention is to provide a simple and economically producible electrode for measuring action flows and/or action potentials in electrically active tissues (preferably the stapedius muscle tissue), ensuring that the electrode is fixed securely, but reversibly, in the muscle tissue and that the muscle tissue is disturbed as little as possible. The electrode arrangement according to the invention comprises a first electrode (2) and a fixing element (3), the first electrode (2) being connected to a first, long electrical line (4) and consisting of a long base body (6) comprising a first end (7) and a second end (8). The first electrical line (4) is connected to the base body (6) in the region of the second end (8) thereof, and means are provided for reversibly fixing the fixing element (3) to the first electrode (2).
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: May 13, 2014
    Assignee: MED-EL Elektromedizinische Geraete GmbH
    Inventors: Detlef Behrend, Klaus-Peter Schmitz, Hans Wilhelm Pau, Katrin Sternberg, Wolfram Schmidt
  • Patent number: 8496971
    Abstract: The present invention relates to a combination for the treatment of osteoporosis and/or the prophylaxis and treatment of bone fractures, said combination comprising collagen, an additional peptide, a calcium-containing substance and a wetting agent with a terminally functionalized oligolactone. The invention also relates to artificial bones and implants produced by the combination and to the use of said combination for fixing implants and treating osteoporosis and/or the prophylaxis and treatment of bone fractures. The invention further relates to a method for producing artificial bones and implants.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: July 30, 2013
    Assignee: Universitaet Rostock
    Inventors: Georg Gradl, Detlef Behrend, Klaus-Peter Schmitz, Katrin Sternberg, Kathleen Schmohl, Sven Kramer
  • Patent number: 8460703
    Abstract: A composition for the adhesive bonding and/or fixing of biological and/or synthetic tissues includes the components: a) a nitrogen-functionalized polysaccharide; and b) a terminally functionalized oligolactone.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: June 11, 2013
    Assignees: Aesculap AG, Universitat Rostock
    Inventors: Erich Odermatt, Jürgen Wegmann, Katrin Sternberg, Detlef Behrend
  • Publication number: 20120283666
    Abstract: Drug delivery systems and biocompatible coatings for use with implantable stimulation devices such as cochlear implants have been developed. These drug delivery systems and coatings comprise polyhydroxyalkanoate (PHA) polymers and copolymers. The drug delivery systems may be used to deliver pharmacologically active substances, for example, directly from a cochlear implant to the inner ear. The coatings can impart lubricity to cochlear devices for ease of insertion of the electrodes. In the preferred embodiment, the drug delivery system comprises a polyhydroxyalkanoate polymer, and in the most preferred embodiment, the PHA polymer comprises poly(4-hydroxybutyrate) (P(4HB)) or copolymer thereof. A particularly preferred embodiment is where the silicone sheath of the cochlear implant electrodes has been surface modified, and coated with P(4HB), and the P(4HB) either contains a pharmacologically active substance or has been coated with such a substance.
    Type: Application
    Filed: October 28, 2011
    Publication date: November 8, 2012
    Inventors: Thomas Lenarz, Klaus-Peter Schmitz, Detlef Behrend, Katrin Sternberg, Simon Williams, David Martin
  • Publication number: 20120263778
    Abstract: The invention relates to a polyurethane urea comprising structural units of formula (I), not terminated by at least one copolymer unit of polyethylene oxide and polypropylene oxide, and that can particularly be used for producing stent coatings. The invention further relates to a substrate having a base coating made of a polyurethane urea according to the invention. The invention further relates to a coating structure comprising at least one layer comprising active substances and made of a polyurethane urea according to the invention, and at least one layer free of active substances, made of a polyurethane urea according to the invention. The invention finally relates to a method for coating a substrate, wherein at least one layer made of a polyurethane urea according to the invention is applied to the substrate.
    Type: Application
    Filed: December 10, 2010
    Publication date: October 18, 2012
    Applicant: Bayer Intellectual Property GmbH
    Inventors: Jürgen Köcher, Christian Wamprecht, Henning Rohm, Klaus-Peter Schmitz, Katrin Sternberg
  • Patent number: 8257729
    Abstract: An implant for implantation in a human or animal body having a structure comprising a) an implant base body; b) a primer layer which is partially or completely applied to the surface of the implant; c) an active ingredient layer consisting of one, two, three or more active ingredients applied entirely or partially to the surface of the primer layer; and d) a diffusion-controlling layer which is applied partially or entirely to the active ingredient layer, and optionally to the primer layer, wherein diffusion of the active ingredients of the active ingredient layer is controlled. Also disclosed is a manufacturing method for an implant.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: September 4, 2012
    Assignees: Biotronik VI Patent AG, Universitaet Rostock, Universitaet Greifswald
    Inventors: Klaus-Peter Schmitz, Detlef Behrend, Katrin Sternberg, Niels Grabow, Claus Harder, Bjoern Klocke, Heyo K. Kroemer, Werner Weitschies
  • Patent number: 8206333
    Abstract: The present invention relates to an ocular implant, particularly a glaucoma stent. It is the object of the present invention to devise an ocular implant which allows the ocular eye pressure to be regulated, i.e., to be maintained at a desired level, while preventing the flow resistance from increasing over time, for example due to fibrosis. In order to achieve this object, the ocular implant according to the invention comprises a small tube (5), the wall surface (3) of which encloses a hollow duct that is open on both sides in the longitudinal direction of the hollow duct, wherein a first opening (1) allowing ocular humor to flow in and a second opening (2) allowing the ocular humor to be discharged is provided, and wherein the wall surface (3) is formed by a liquid-tight material, and wherein at least one pressure-controlled valve (4) is disposed in the area of the wall surface (3).
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: June 26, 2012
    Assignee: Universitaet Rostock
    Inventors: Wolfram Schmidt, Katrin Sternberg, Detlef Behrend, Rudolf Guthoff, Klaus-Peter Schmitz
  • Publication number: 20110282177
    Abstract: The invention relates to an electrode arrangement and a measuring device for measuring the action flow and/or the action potential of an electrically active tissue. The aim of the invention is to provide a simple and economically producible electrode for measuring action flows and/or action potentials in electrically active tissues (preferably the stapedius muscle tissue), ensuring that the electrode is fixed securely, but reversibly, in the muscle tissue and that the muscle tissue is disturbed as little as possible. The electrode arrangement according to the invention comprises a first electrode (2) and a fixing element (3), the first electrode (2) being connected to a first, long electrical line (4) and consisting of a long base body (6) comprising a first end (7) and a second end (8). The first electrical line (4) is connected to the base body (6) in the region of the second end (8) thereof, and means are provided for reversibly fixing the fixing element (3) to the first electrode (2).
    Type: Application
    Filed: June 4, 2008
    Publication date: November 17, 2011
    Applicant: MED-EL ELEKTROMEDIZINISCHE GERAETE GMBH
    Inventors: Detlef Behrend, Klaus-Peter Schmitz, Hans Wilhelm Pau, Katrin Sternberg, Wolfram Schmidt
  • Publication number: 20110190866
    Abstract: Absorbable stents and absorbable stent coatings have been developed with improved properties. These devices preferably comprise biocompatible copolymers or homopolymers of 4-hydroxybutyrate, and optionally poly-L-lactic acid and other absorbable polymers and additives. Compositions of these materials can be used to make absorbable stents that provide advantageous radial strengths, resistance to recoil and creep, can be plastically expanded on a balloon catheter, and can be deployed rapidly in vivo. Stent coatings derived from these materials provide biocompatible, uniform coatings that are ductile, and can be expanded without the coating cracking and/or delarmnating and can be used as a coating matrix for drug incorporation.
    Type: Application
    Filed: July 17, 2009
    Publication date: August 4, 2011
    Inventors: Klaus-Peter Schmitz, Detlef Behrend, Katrin Sternberg, Niels Grabow, David P. Martin, Simon F. Williams