Patents by Inventor Katsumi Yamanoguchi

Katsumi Yamanoguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180233590
    Abstract: In a group III nitride-type field effect transistor, the present invention reduces a leak current component by conduction of residual carriers in a buffer layer, and achieves improvement in a break-down voltage, and enhances a carrier confinement effect (carrier confinement) of a channel to improve pinch-off characteristics (to suppress a short channel effect). For example, when applying the present invention to a GaN-type field effect transistor, besides GaN of a channel layer, a composition-modulated (composition-gradient) AlGaN layer in which aluminum composition reduces toward a top gradually or stepwise is used as a buffer layer (hetero buffer).
    Type: Application
    Filed: March 16, 2018
    Publication date: August 16, 2018
    Inventors: Takashi Inoue, Tatsuo Nakayama, Yuji Ando, Yasuhiro Murase, Kazuki Ota, Hironobu Miyamoto, Katsumi Yamanoguchi, Naotaka Kuroda, Akio Wakejima, Yasuhiro Okamoto
  • Patent number: 9954087
    Abstract: In a group III nitride-type field effect transistor, the present invention reduces a leak current component by conduction of residual carriers in a buffer layer, and achieves improvement in a break-down voltage, and enhances a carrier confinement effect (carrier confinement) of a channel to improve pinch-off characteristics (to suppress a short channel effect). For example, when applying the present invention to a GaN-type field effect transistor, besides GaN of a channel layer, a composition-modulated (composition-gradient) AlGaN layer in which aluminum composition reduces toward a top gradually or stepwise is used as a buffer layer (hetero buffer).
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: April 24, 2018
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Takashi Inoue, Tatsuo Nakayama, Yuji Ando, Yasuhiro Murase, Kazuki Ota, Hironobu Miyamoto, Katsumi Yamanoguchi, Naotaka Kuroda, Akio Wakejima, Yasuhiro Okamoto
  • Publication number: 20140367743
    Abstract: In a group III nitride-type field effect transistor, the present invention reduces a leak current component by conduction of residual carriers in a buffer layer, and achieves improvement in a break-down voltage, and enhances a carrier confinement effect (carrier confinement) of a channel to improve pinch-off characteristics (to suppress a short channel effect). For example, when applying the present invention to a GaN-type field effect transistor, besides GaN of a channel layer, a composition-modulated (composition-gradient) AlGaN layer in which aluminum composition reduces toward a top gradually or stepwise is used as a buffer layer (hetero buffer).
    Type: Application
    Filed: August 27, 2014
    Publication date: December 18, 2014
    Inventors: Takashi Inoue, Tatsuo Nakayama, Yuji Ando, Yasuhiro Murase, Kazuki Ota, Hironobu Miyamoto, Katsumi Yamanoguchi, Naotaka Kuroda, Akio Wakejima, Yasuhiro Okamoto
  • Patent number: 8853666
    Abstract: In a group III nitride-type field effect transistor, the present invention reduces a leak current component by conduction of residual carriers in a buffer layer, and achieves improvement in a break-down voltage, and enhances a carrier confinement effect (carrier confinement) of a channel to improve pinch-off characteristics (to suppress a short channel effect). For example, when applying the present invention to a GaN-type field effect transistor, besides GaN of a channel layer, a composition-modulated (composition-gradient) AlGaN layer in which aluminum composition reduces toward a top gradually or stepwise is used as a buffer layer (hetero buffer).
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: October 7, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Takashi Inoue, Tatsuo Nakayama, Yuji Ando, Yasuhiro Murase, Kazuki Ota, Hironobu Miyamoto, Katsumi Yamanoguchi, Naotaka Kuroda, Akio Wakejima, Yasuhiro Okamoto
  • Patent number: 7863648
    Abstract: A field effect transistor (100) exhibiting good performance at high voltage operation and high frequency includes a first field plate electrode (116) and a second field plate electrode (118). The second field plate electrode includes a shielding part (119) located in the region between the first field plate electrode and a drain electrode (114), and serves to shield the first field plate electrode from the drain electrode. When in the cross sectional view in the gate length direction, the length in the gate length direction of an overlap region where the second field plate electrode (118) overlap the upper part of a structure including the first field plate electrode and a gate electrode (113) is designated as Lol, and the gate length is Lg, the relation expressed as 0 ?Lol/Lg?1 holds.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: January 4, 2011
    Assignee: NEC Corporation
    Inventors: Hironobu Miyamoto, Yuji Ando, Yasuhiro Okamoto, Tatsuo Nakayama, Takashi Inoue, Kazuki Ota, Akio Wakejima, Kensuke Kasahara, Yasuhiro Murase, Kohji Matsunaga, Katsumi Yamanoguchi, Hidenori Shimawaki
  • Patent number: 7800131
    Abstract: A field effect transistor includes a layer structure made of compound semiconductor (111) provided on a semiconductor substrate (110) made of GaAs or InP, as an operation layer, and employs a first field plate electrode (116) and a second field plate electrode (118). The second field plate electrode includes a shielding part (119) located in the region between the first field plate electrode and a drain electrode (114), and serves to shield the first field plate electrode from the drain electrode. When, in the cross sectional view in the gate length direction, the length in the gate length direction of an overlap region, in which the second field plate electrode overlaps the upper part of a structure composed of the first field plate electrode and a gate electrode (113), is designated as Lol, and the gate length is Lg, the relation expressed as 0?Lol/Lg?1 holds.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: September 21, 2010
    Assignee: NEC Corporation
    Inventors: Hironobu Miyamoto, Yuji Ando, Yasuhiro Okamoto, Tatsuo Nakayama, Takashi Inoue, Kazuki Ota, Akio Wakejima, Kensuke Kasahara, Yasuhiro Murase, Kohji Matsunaga, Katsumi Yamanoguchi, Hidenori Shimawaki
  • Publication number: 20090230429
    Abstract: A field effect transistor (100) exhibiting good performance at high voltage operation and high frequency includes a first field plate electrode (116) and a second field plate electrode (118). The second field plate electrode includes a shielding part (119) located in the region between the first field plate electrode and a drain electrode (114), and serves to shield the first field plate electrode from the drain electrode. When in the cross sectional view in the gate length direction, the length in the gate length direction of an overlap region where the second field plate electrode (118) overlap the upper part of a structure including the first field plate electrode and a gate electrode (113) is designated as Lol, and the gate length is Lg, the relation expressed as 0?Lol/Lg?1 holds.
    Type: Application
    Filed: June 12, 2006
    Publication date: September 17, 2009
    Applicant: NEC CORPORATION
    Inventors: Hironobu Miyamoto, Yuji Ando, Yasuhiro Okamoto, Tasuo Nakayama, Takashi Inoue, Kazuki Ota, Akio Wakejima, Kensuke Kasahara, Yasuhiro Murase, Kohji Matsunaga, Katsumi Yamanoguchi, Hidenori Shimawaki
  • Publication number: 20090230430
    Abstract: A field effect transistor includes a layer structure made of compound semiconductor (111) provided on a semiconductor substrate (110) made of GaAs or InP, as an operation layer, and employs a first field plate electrode (116) and a second field plate electrode (118). The second field plate electrode includes a shielding part (119) located in the region between the first field plate electrode and a drain electrode (114), and serves to shield the first field plate electrode from the drain electrode. When, in the cross sectional view in the gate length direction, the length in the gate length direction of an overlap region, in which the second field plate electrode overlaps the upper part of a structure composed of the first field plate electrode and a gate electrode (113), is designated as Lol, and the gate length is Lg, the relation expressed as 0?Lol/Lg?1 holds.
    Type: Application
    Filed: June 12, 2006
    Publication date: September 17, 2009
    Applicant: NEC CORPRORATION
    Inventors: Hironobu Miyamoto, Yuji Ando, Yasuhiro Okamoto, Tatsuo Nakayama, Takashi Inoue, Kazuki Ota, Aklo Wakejima, Kensuke Kasahara, Yasuhiro Murase, Kohji Matsunaga, Katsumi Yamanoguchi, Hidenori Shimawaki
  • Publication number: 20090045438
    Abstract: In a group III nitride-type field effect transistor, the present invention reduces a leak current component by conduction of residual carriers in a buffer layer, and achieves improvement in a break-down voltage, and enhances a carrier confinement effect (carrier confinement) of a channel to improve pinch-off characteristics (to suppress a short channel effect). For example, when applying the present invention to a GaN-type field effect transistor, besides GaN of a channel layer, a composition-modulated (composition-gradient) AlGaN layer in which aluminum composition reduces toward a top gradually or stepwise is used as a buffer layer (hetero buffer).
    Type: Application
    Filed: October 25, 2006
    Publication date: February 19, 2009
    Inventors: Takashi Inoue, Tatsuo Nakayama, Yuji Ando, Yasuhiro Murase, Kazuki Ota, Hironobu Miyamoto, Katsumi Yamanoguchi, Naotaka Kuroda, Akio Wakejima, Yasuhiro Okamoto