Patents by Inventor Katsunori Yanagida

Katsunori Yanagida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220037740
    Abstract: This non-aqueous electrolyte secondary battery comprises a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode. The separator includes; a porous base material; a first filler layer which contains phosphate particles as a primary component and is arranged on one surface of the base material; and a second filler layer which is arranged on the other surface of the base material and which contains at least one type of compound selected from the group consisting of an aromatic polyamide, an aromatic polyimide and an aromatic polyamideimide. The BET specific surface area of the phosphate particles is 5-100 m2/g. The content of the aforementioned compounds in the second filler layer 32 is 15 mass % or more.
    Type: Application
    Filed: December 11, 2019
    Publication date: February 3, 2022
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Masanori Sugimori, Yasunori Baba, Katsunori Yanagida, Nobuhiro Hirano
  • Publication number: 20220029165
    Abstract: A negative electrode for a nonaqueous electrolyte secondary battery, said negative electrode comprising a negative-electrode current collector, and a negative-electrode active material layer provided upon the negative-electrode current collector, wherein the negative-electrode active material layer includes a negative-electrode active material and polyvinylpyrrolidone, and an area that extends 10% in the thickness direction from the surface of the reverse side of the negative-electrode active material layer from the negative-electrode current collector has a higher polyvinylpyrrolidone content than an area that extends 10% in the thickness direction from the surface of the negative-electrode current collector side of the negative-electrode active material layer.
    Type: Application
    Filed: November 11, 2019
    Publication date: January 27, 2022
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Kouhei Tsuzuki, Yuki Morikawa, Hirokazu Wada, Katsunori Yanagida
  • Publication number: 20220029243
    Abstract: This non-aqueous electrolyte secondary battery comprises a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode. The separator includes: a porous base material; a first filler layer which contains phosphate particles as a primary component and is arranged on one surface of the base material; and a second filler layer which is disposed between the base material and the first filler layer and which contains at least one type of compound selected from the group consisting of an aromatic polyamide, an aromatic polyimide and an aromatic polyiamideimide. The BET specific surface area of the phosphate particles is 5-100 m2/g. The content of the aforementioned compounds in the second filler layer is 15 mass % or greater.
    Type: Application
    Filed: December 11, 2019
    Publication date: January 27, 2022
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Masanori Sugimori, Yasunori Baba, Katsunori Yanagida, Nobuhiro Hirano
  • Publication number: 20210296639
    Abstract: The present disclosure relates to a secondary battery module including a nonaqueous electrolyte secondary battery and an elastic body. The elastic body has a compressive elastic modulus of 5 MPa to 120 MPa. The nonaqueous electrolyte secondary battery includes a positive electrode and a negative electrode. The positive electrode includes a positive electrode collector containing Ti as a main component and having a thickness of 1 ?m to 8 ?m. The negative electrode includes a first layer and a second layer sequentially formed from a side with the negative electrode collector. The first layer contains negative electrode active material particles containing first carbon-based active material particles with a 10% proof stress of 3 MPa or less. The second layer contains negative electrode active material particles containing second carbon-based active material particles with a 10% proof stress of 5 MPa or greater.
    Type: Application
    Filed: March 12, 2021
    Publication date: September 23, 2021
    Applicants: Panasonic Corporation, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasunori Baba, Harunari Shimamura, Keisuke Ohara, Kohei Masai, Kouhei Tsuzuki, Katsunori Yanagida, Yo Kato
  • Publication number: 20210296683
    Abstract: The present disclosure relates to a secondary battery module including a nonaqueous electrolyte secondary battery and an elastic body. The elastic body has a compressive elastic modulus of 5 MPa to 120 MPa. The positive electrode includes a positive electrode collector with a thermal conductive rate of 65 W/(m·K) to 150 W/(m·K). The negative electrode includes a negative electrode active material layer including a first layer and a second layer sequentially formed from a side with the negative electrode collector. The first layer contains first carbon-based active material particles with a 10% proof stress of 3 MPa or less. The second layer contains second carbon-based active material particles with a 10% proof stress of 5 MPa or greater.
    Type: Application
    Filed: March 12, 2021
    Publication date: September 23, 2021
    Applicants: Panasonic Corporation, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuki Morikawa, Takuya Asari, Harunari Shimamura, Kouhei Tsuzuki, Katsunori Yanagida, Yo Kato
  • Publication number: 20210288311
    Abstract: A positive electrode for nonaqueous electrolyte secondary batteries which contains a first positive electrode active material, a second positive electrode active material and a phosphoric acid compound. With respect to the first positive electrode active material, the volume per mass of pores having a pore diameter of 100 nm or less is 8 mm3/g or more. With respect to the second positive electrode active material, the volume per mass of pores having a pore diameter of 100 nm or less is 5 mm3/g or less. In addition, the volume per mass of pores having a pore diameter of 100 nm or less of the first positive electrode active material is four times or more the volume per mass of pores having a pore diameter of 100 nm or less of the second positive electrode active material.
    Type: Application
    Filed: September 15, 2017
    Publication date: September 16, 2021
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Takashi Ko, Fumiharu Niina, Katsunori Yanagida
  • Publication number: 20210257702
    Abstract: In a nonaqueous electrolyte secondary battery which is an example of the embodiment of the present invention, a separator comprises a porous base material, a first filler layer that includes phosphate particles and is formed on one side of the base material, and a second filler layer that includes inorganic particles which have a melting point that is higher than that of the phosphate particles and is formed on the other side of the base material. The volume-based 10% particle size (D10) of the phosphate particles is 0.02 to 0.5 ?m and is smaller than the average pore size of the base material. A portion of the phosphate particles penetrates into voids of the base material, and an average value of penetration depth of the particles is 0.1 to 2 ?m.
    Type: Application
    Filed: February 25, 2019
    Publication date: August 19, 2021
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Masanori Sugimori, Yasunori Baba, Katsunori Yanagida, Nobuhiro Hirano
  • Publication number: 20210249649
    Abstract: In a nonaqueous electrolyte secondary battery a separator includes a porous substrate, a first filler layer, and a second filler layer. The first filler layer comprises phosphate particles having a BET specific surface area of 5 to 100 m2/g and polyvinylidene fluoride and is formed on a first surface that faces the positive electrode side of the substrate and contacts the positive electrode. The second filler comprises inorganic particles which have a melting point higher than that of the phosphate particles and is formed on at least one of a second surface that faces the negative electrode side of the substrate and the area between the substrate and the first filler layer. The content of the polyvinylidene fluoride in the first filler layer is 10 to 50 mass % and is higher in a region on the positive electrode side than in a region on the substrate side.
    Type: Application
    Filed: February 25, 2019
    Publication date: August 12, 2021
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Yasunori Baba, Masanori Sugimori, Katsunori Yanagida, Nobuhiro Hirano
  • Publication number: 20210226294
    Abstract: An advantage of the present invention is to suppress an increase in resistance during high-rate charge and discharge and a reduction in capacity during a charge and discharge cycle. An electrical storage module of the present embodiment includes: an electrical storage device, and an elastic body that is placed with the electrical storage device and receives a load from the electrical storage device in a placement direction. The electrical storage device includes a positive electrode, a negative electrode, and a separator. The negative electrode includes a negative-electrode active material layer. The negative-electrode active material layer includes a first layer formed on the negative-electrode current collector, and a second layer that is formed on the first layer and has a higher compression modulus than the first layer. The separator has a lower compression modulus than the first layer, and the elastic body has a lower compression modulus than the separator.
    Type: Application
    Filed: January 12, 2021
    Publication date: July 22, 2021
    Applicants: Panasonic Corporation, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kouhei Tsuzuki, Tetsuji Omura, Goro Fujita, Katsunori Yanagida, Yoshitaka Minamida
  • Publication number: 20210194009
    Abstract: This negative electrode comprises an electrode current collector, and an electrode mixture layer provided on a surface of the electrode current collector. When, with respect to the thickness direction of the electrode mixture layer, a range from the surface on the side of the electrode current collector to 40% of the thickness of the electrode mixture layer is defined as a first region, and a range from the surface on the side opposite to the electrode current collector to 40% of the thickness of the electrode mixture layer is defined as a second region, the first region and the second region have different volume change ratio upon charge and discharge, and the region having the larger volume change ratio upon charge and discharge has a higher content of a solid inorganic filler and a lower content of a hollow inorganic filler than the region having the smaller volume change ratio.
    Type: Application
    Filed: December 17, 2020
    Publication date: June 24, 2021
    Applicants: Panasonic Corporation, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naoto Onodera, Katsunori Yanagida, Yo Kato
  • Publication number: 20210193995
    Abstract: This negative electrode comprises a electrode current collector, a first electrode mixture layer provided on the surface of the electrode current collector, and a second electrode mixture layer provided on the surface of the first electrode mixture layer. The first electrode mixture layer and the second electrode mixture layer have different volume change ratio upon charge and discharge. The first electrode mixture layer has an interface portion in contact with the second electrode mixture layer, and a body portion located nearer to the electrode current collector side than the interface portion. The thickness of the interface portion t satisfies a relationship t?dg/2 with an average particle size of the graphite particles included in the first electrode mixture layer being dg. The content of an inorganic filler in the interface portion is higher than the content of the inorganic filler included in the body portion.
    Type: Application
    Filed: December 16, 2020
    Publication date: June 24, 2021
    Applicants: Panasonic Corporation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Naoto Onodera, Katsunori Yanagida, Yo Kato
  • Patent number: 11024837
    Abstract: A nonaqueous electrolyte secondary battery according to an embodiment includes an electrode body, which is formed by winding a positive electrode and a negative electrode through a separator and then compressing into a flat shape, and a nonaqueous electrolyte. The positive electrode contains a lithium transition metal oxide which contains tungsten oxide adhering to the particle surfaces thereof. The negative electrode contains a negative electrode active material, which has particle surfaces coated with an amorphous carbon film, and at least one of polyacrylic acid and a salt thereof. The pressure acting in the thickness direction of the electrode body is 5×10?2 MPa or more.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: June 1, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Akihiko Takada, Sho Urata, Kouhei Tuduki, Fumiharu Niina, Katsunori Yanagida
  • Publication number: 20210159498
    Abstract: In a non-aqueous electrolyte secondary battery according to one exemplary embodiment, a separator includes a substrate, a first filler layer containing phosphate particles and formed on at least one surface of the substrate, and a second filler layer containing inorganic particles and formed on a surface of the first filler layer on the side of the at least one surface of the substrate. The phosphate particles have a BET specific surface area of 5 m2/g or more and 100 m2/g or less.
    Type: Application
    Filed: December 14, 2018
    Publication date: May 27, 2021
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Natsumi Goto, Masanori Sugimori, Yasunori Baba, Katsunori Yanagida, Nobuhiro Hirano
  • Patent number: 11005090
    Abstract: This non-aqueous electrolyte secondary battery is provided with: a wound electrode body which comprises a positive electrode, a negative electrode and a separator, and wherein the positive electrode and the negative electrode are wound into a roll, with the separator being interposed therebetween; and a non-aqueous electrolyte. The negative electrode comprises a negative electrode collector and a negative electrode mixture layer that is formed on the negative electrode collector. The negative electrode mixture layer contains graphite, a carbon material that has a BET specific surface area of 10 m2/g or more, said BET specific surface area being larger than that of the graphite, and a hydrophobic binder. The coverage of the particle surfaces of the carbon material by the binder is higher than the coverage of the particle surfaces of the graphite by the binder.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: May 11, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kouhei Tuduki, Takashi Ko, Fumiharu Niina, Katsunori Yanagida
  • Patent number: 10930968
    Abstract: In a nonaqueous electrolyte secondary battery, a positive electrode contains a lithium transition metal oxide and a phosphoric acid compound. A nonaqueous electrolyte contains a dinitrile represented by a general formula: NC-A-CN (A represents a linear hydrocarbon having 1 to 10 carbon atoms or a hydrocarbon which contains a main chain having 1 to 10 carbon atoms and at least one side chain having 3 or less carbon atoms); an ether represented by a general formula: R1—O—R2—O—R3 (R1 and R3 each represent a group which contains a main chain having 1 to 3 carbon atoms, and R2 represents a chain hydrocarbon group having 1 to 3 carbon atoms); and a fluorophosphate salt.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: February 23, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Akihiko Takada, Fumiharu Niina, Katsunori Yanagida
  • Patent number: 10923713
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. The positive electrode contains a lithium transition metal oxide, at least one element of a group 5 element and group 6 element in the periodic table, and a phosphoric acid compound. The nonaqueous electrolyte contains a lithium salt containing a P—O bond and a P—F bond.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: February 16, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Fumiharu Niina, Takashi Ko, Katsunori Yanagida
  • Patent number: 10910633
    Abstract: A nonaqueous electrolyte secondary battery in which low-crystalline carbon-covered graphite is used as negative electrode active material, wherein a cobalt-containing lithium transitional metal oxide is used for: a first positive electrode active material in which the volume per unit mass of pores having a pore size of 100 nm or less is 8 mm3/g or greater; and a second positive electrode active material in which the volume per unit mass of pores having a pore size of 100 nm or less is 5 mm3/g or less.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: February 2, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Takashi Ko, Fumiharu Niina, Katsunori Yanagida, Yasunori Baba, Yuki Morikawa
  • Patent number: 10903485
    Abstract: A negative electrode for nonaqueous electrolyte secondary batteries includes a negative electrode current collector and a negative electrode mixture layer disposed on the negative electrode current collector, and the negative electrode mixture layer contains a negative electrode active material containing lithium titanate, a binder, and a (meth)acrylic acid-based polymer. The amount of the (meth)acrylic acid-based polymer in the negative electrode mixture layer is 10 mass % or less relative to the total amount of the (meth)acrylic acid-based polymer and the binder. The amount of the (meth)acrylic acid-based polymer in a portion of the negative electrode mixture layer that extends from the surface to the middle of the negative electrode mixture layer in the thickness direction (upper region) is 60 mass % or more relative to the total amount of the (meth)acrylic acid-based polymer.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: January 26, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Masanori Sugimori, Yasunori Baba, Katsunori Yanagida
  • Publication number: 20210013496
    Abstract: In a nonaqueous electrolyte secondary battery, a negative electrode mix layer includes a first layer and a second layer disposed successively from a negative electrode collector. The first layer contains a first carbon-based active material having a 10% compressive strength of 3 MPa or less and a silicon-based active material containing Si. The second layer contains a second carbon-based active material having a 10% compressive strength of 5 MPa or more and has a lower content (mass ratio) of the silicon-based active material than the first layer.
    Type: Application
    Filed: January 22, 2019
    Publication date: January 14, 2021
    Applicants: Panasonic Corporation, SANYO Electric Co., Ltd.
    Inventors: Kouhei Tsuzuki, Yuki Morikawa, Hirokazu Wada, Yuta Matsuo, Kaori Ishikawa, Katsunori Yanagida
  • Patent number: 10892472
    Abstract: A non-aqueous electrolyte secondary battery which uses a lithium titanium composite oxide as a negative electrode active material is configured to use a first positive electrode active material that is a Co-containing lithium transition metal oxide and has a volume per mass of 8 mm3/g or more with respect to pores having a pore diameter of 100 nm or less and a second positive electrode active material that has a volume per mass of 5 mm3/g or less with respect to pores having a pore diameter of 100 nm or less.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: January 12, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yuki Morikawa, Yasunori Baba, Takashi Ko, Fumiharu Niina, Katsunori Yanagida