Patents by Inventor Katsutoshi Komeya

Katsutoshi Komeya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8491817
    Abstract: A luminescent material which is featured in that it exhibits an emission peak at a wavelength ranging from 490 to 580 nm as it is excited by light having a wavelength ranging from 250 to 500 nm and that it has a composition represented by the following general formula (2): (M1-xRx)a2AlSib2Oc2Nd2??(2) (In the general formula (2), M is at least one metallic element excluding Si and Al, R is a luminescence center element, and x, a2, b2, c2 and d2 satisfy the following relationships: 0<x?1, 0.93<a2<1.3, 4.0<b2<5.8 0.6<c2<1, 6<d2<11).
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: July 23, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yumi Fukuda, Hironori Asai, Ryosuke Hiramatsu, Junichi Tatami, Katsutoshi Komeya, Toru Wakihara, Katsuko Tamatani
  • Patent number: 8482192
    Abstract: A luminescent material which is featured in that it exhibits an emission peak at a wavelength ranging from 490 to 580 nm as it is excited by light having a wavelength ranging from 250 to 500 nm and that it has a composition represented by the following general formula (2): (M1-xRx)a2AlSib2Oc2Nd2??(2) (In the general formula (2), M is at least one metallic element excluding Si and Al, R is a luminescence center element, and x, a2, b2, c2 and d2 satisfy the following relationships: 0<x?1, 0.93<a2<1.3, 4.0<b2<5.8 0.6<c2<1, 6<d2<11).
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: July 9, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yumi Fukuda, Hironori Asai, Ryosuke Hiramatsu, Junichi Tatami, Katsutoshi Komeya, Toru Wakihara, Katsuko Tamatani
  • Patent number: 8475680
    Abstract: A luminescent material which is featured in that it exhibits an emission peak at a wavelength ranging from 490 to 580 nm as it is excited by light having a wavelength ranging from 250 to 500 nm and that it has a composition represented by the following general formula (2): (M1-xRx)a2AlSib2Oc2Nd2??(2) (In the general formula (2), M is at least one metallic element excluding Si and Al, R is a luminescence center element, and x, a2, b2, c2 and d2 satisfy the following relationships: 0<x?1, 0.93<a2<1.3, 4.0<b2<5.8 0.6<c2<1, 6<d2<11).
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: July 2, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yumi Fukuda, Hironori Asai, Ryosuke Hiramatsu, Junichi Tatami, Katsutoshi Komeya, Toru Wakihara, Katsuko Tamatani
  • Patent number: 8450923
    Abstract: A luminescent material which is featured in that it exhibits an emission peak at a wavelength ranging from 490 to 580 nm as it is excited by light having a wavelength ranging from 250 to 500 nm and that it has a composition represented by the following general formula (2): (M1-xRx)a2AlSib2Oc2Nd2??(2) (In the general formula (2), M is at least one metallic element excluding Si and Al, R is a luminescence center element, and x, a2, b2, c2 and d2 satisfy the following relationships: 0<x?1, 0.93<a2<1.3, 4.0<b2<5.8 0.6<c2<1, 6<d2<11).
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: May 28, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yumi Fukuda, Hironori Asai, Ryosuke Hiramatsu, Junichi Tatami, Katsutoshi Komeya, Toru Wakihara, Katsuko Tamatani
  • Patent number: 8105502
    Abstract: A luminescent material is provided, which includes a carbide oxynitride-based compound having a composition represented by formula 1: (M1?wRw)uAl1?xSi1+vOzNtCy??formula 1 wherein M is at least one metal element excluding Si and Al, and R is a luminescent central element. w, u, x, v, z, t and y satisfy following relationships: 0.001<w<0.5; 0.66?u?1; 0.07?x?0.73; 0.06?v?0.84; 0.04?z?0.44; 2.7?t?3.1; and 0.019?y?0.13.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: January 31, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yumi Fukuda, Jun-ichi Tatami, Hironori Asai, Katsutoshi Komeya, Naotoshi Matsuda, Toru Wakihara, Keiko Albessard, Shoko Abe
  • Publication number: 20110058583
    Abstract: A luminescent material which is featured in that it exhibits an emission peak at a wavelength ranging from 490 to 580 nm as it is excited by light having a wavelength ranging from 250 to 500 nm and that it has a composition represented by the following general formula (2): (M1-xRx)a2AlSib2Oc2Nd2??(2) (In the general formula (2), M is at least one metallic element excluding Si and Al, R is a luminescence center element, and x, a2, b2, c2 and d2 satisfy the following relationships: 0<x?1, 0.93<a2<1.3, 4.0<b2<5.8 0.6<c2<1, 6<d2<11).
    Type: Application
    Filed: November 12, 2010
    Publication date: March 10, 2011
    Inventors: Yumi FUKUDA, Masaaki Tamanani, Katsuko Tamatani, Hironori Asai, Ryosuke Hiramatsu, Junichi Tatami, Katsutoshi Komeya, Toru Wakihara
  • Publication number: 20110058582
    Abstract: A luminescent material which is featured in that it exhibits an emission peak at a wavelength ranging from 490 to 580 nm as it is excited by light having a wavelength ranging from 250 to 500 nm and that it has a composition represented by the following general formula (2): (M1-xRx)a2AlSib2Oc2Nd2??(2) (In the general formula (2), M is at least one metallic element excluding Si and Al, R is a luminescence center element, and x, a2, b2, c2 and d2 satisfy the following relationships: 0<x?1, 0.93<a2<1.3, 4.0<b2<5.8 0.6<c2<1, 6<d2<11).
    Type: Application
    Filed: November 12, 2010
    Publication date: March 10, 2011
    Inventors: Yumi FUKUDA, Masaaki Tamatani, Katsuko Tamatani, Hironori Asai, Ryosuke Hiramatsu, Junichi Tatami, Katsutoshi Komeya, Toru Wakihara
  • Publication number: 20110057149
    Abstract: A luminescent material which is featured in that it exhibits an emission peak at a wavelength ranging from 490 to 580 nm as it is excited by light having a wavelength ranging from 250 to 500 nm and that it has a composition represented by the following general formula (2): (M1-xRx)a2AlSib2Oc2Nd2 ??(2) (In the general formula (2), M is at least one metallic element excluding Si and Al, R is a luminescence center element, and x, a2, b2, c2 and d2 satisfy the following relationships: 0<x?1, 0.93<a2<1.3, 4.0<b2<5.8 0.6<c2<1, 6<d2<11).
    Type: Application
    Filed: November 12, 2010
    Publication date: March 10, 2011
    Inventors: Yumi FUKUDA, Masaaki Tamanani, Katsuko Tamatani, Hironori Asai, Ryosuke Hiramatsu, Junichi Tatami, Katsutoshi Komeya, Toru Wakihara
  • Patent number: 7638934
    Abstract: A fluorescent substance is provided, with includes a matrix composed of a compound having an AlN polytypoid structure represented by the following general formula (1), and a luminescence center element: (Al,M)a(N,X)b??(1) wherein, M is at least one metal excluding Al, X is at least one non-metal excluding N, and a and b are positive values.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: December 29, 2009
    Assignees: Kabushiki Kaisha Toshiba, National University Corporation Yokohama National University
    Inventors: Yumi Fukuda, Masaaki Tamatani, Hironori Asai, Naotoshi Matsuda, Ryosuke Hiramatsu, Keiko Albessard, Jun-ichi Tatami, Katsutoshi Komeya, Tohru Wakihara
  • Patent number: 7612006
    Abstract: To provide a sintered silicon nitride with conductivity and densification, an oxide of titanium group elements, such as titanium oxide, hafnium oxide, zirconium oxide and the like, aluminum oxide and/or aluminum nitride is added as needed to silicon nitride-oxidant of rare-earth elements-aluminum oxide system or silicon nitride-oxide of rare-earth elements-magnesia system, and then specified quantity of carbon nonotube (CNT) is added to the above mixture. CNT generates silicon carbide after the reaction with contiguous or proximal silicon nitride and the like depending on the sintering duration at high temperature. Since silicon carbide is generated along with nanotubes, the silicon carbide functions as conductor with excellent heat resistance, corrosion resistance and the like.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: November 3, 2009
    Assignee: Yokohama TLO Company, Ltd.
    Inventors: Katsutoshi Komeya, Junichi Tatami, Takeshi Meguro, Tomofumi Katashima, Toru Wakihara
  • Publication number: 20090096361
    Abstract: A luminescent material which is featured in that it exhibits an emission peak at a wavelength ranging from 490 to 580 nm as it is excited by light having a wavelength ranging from 250 to 500 nm and that it has a composition represented by the following general formula (2): (M1-xRx)a2AlSib2Oc2Nd2??(2) (In the general formula (2), M is at least one metallic element excluding Si and Al, R is a luminescence center element, and x, a2, b2, c2 and d2 satisfy the following relationships: 0<x?1, 0.93<a2<1.3, 4.0<b2<5.8 0.6<c2<1, 6<d2<11).
    Type: Application
    Filed: September 10, 2008
    Publication date: April 16, 2009
    Inventors: Yumi Fukuda, Masaaki Tamatani, Hironori Asai, Ryosuke Hiramatsu, Junichi Tatami, Katsutoshi Komeya, Toru Wakihara, Katsuko Tamatani
  • Publication number: 20090072195
    Abstract: A luminescent material is provided, which includes a carbide oxynitride-based compound having a composition represented by formula 1: (M1?wRw)uAl1?xSi1+vOzNtCy??formula 1 wherein M is at least one metal element excluding Si and Al, and R is a luminescent central element. w, u, x, v, z, t and y satisfy following relationships: 0.001<w<0.5; 0.66?u?1; 0.07?x?0.73; 0.06?v?0.84; 0.04?z?0.44; 2.7?t?3.1; and 0.019?y?0.13.
    Type: Application
    Filed: September 17, 2008
    Publication date: March 19, 2009
    Inventors: Yumi FUKUDA, Jun-ichi Tatami, Hironori Asai, Katsutoshi Komeya, Naotoshi Matsuda, Toru Wakihara, Keiko Albessard, Shoko Abe
  • Publication number: 20080076657
    Abstract: To provide a sintered silicon nitride with conductivity and densification, an oxide of titanium group elements, such as titanium oxide, hafnium oxide, zirconium oxide and the like, aluminum oxide and/or aluminum nitride is added as needed to silicon nitride-oxidant of rare-earth elements-aluminum oxide system or silicon nitride-oxide of rare-earth elements-magnesia system, and then specified quantity of carbon nonotube (CNT) is added to the above mixture. CNT generates silicon carbide after the reaction with contiguous or proximal silicon nitride and the like depending on the sintering duration at high temperature. Since silicon carbide is generated along with nanotubes, the silicon carbide functions as conductor with excellent heat resistance, corrosion resistance and the like.
    Type: Application
    Filed: September 27, 2005
    Publication date: March 27, 2008
    Inventors: Katsutoshi Komeya, Junichi Tatami, Takeshi Meguro, Tomofumi Katashima, Toru Wakihara
  • Publication number: 20060290269
    Abstract: A fluorescent substance is provided, with includes a matrix composed of a compound having an AlN polytypoid structure represented by the following general formula (1), and a luminescence center element: (Al, M)a(N, X)b ??(1) wherein, M is at least one metal excluding Al, X is at least one non-metal excluding N, and a and b are positive values.
    Type: Application
    Filed: May 31, 2006
    Publication date: December 28, 2006
    Inventors: Yumi Fukuda, Masaaki Tamatani, Hironori Asai, Naotoshi Matsuda, Ryosuke Hiramatsu, Keiko Albessard, Jun-ichi Tatami, Katsutoshi Komeya, Tohru Wakihara
  • Patent number: 4879263
    Abstract: A sliding member formed of sintered silicon nitride shows improvement in strength and abrasion resistance when substantially all the .beta.-phase type fine silicon nitride particles present as a main component in the sintered silicon nitride have major diameters not exceeding 60 .mu.m and aspect ratios of not less than 5 and the aforementioned fine silicon nitride particles have a relative density of not less than 98%.
    Type: Grant
    Filed: September 17, 1985
    Date of Patent: November 7, 1989
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsutoshi Komeya, Hashimoto, Masahiro, Katsutoshi Nishida, Michiyasu Komatsu
  • Patent number: 4756976
    Abstract: A ceramic with anisotropic thermal conductivity, which has an aluminum nitride polytype layer arranged in a portion of an aluminum-nitride-based sintered body as a thermal barrier.
    Type: Grant
    Filed: August 7, 1987
    Date of Patent: July 12, 1988
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsutoshi Komeya, Akihiko Tsuge
  • Patent number: 4693857
    Abstract: As the aluminum nitride component of a sintering aid for powdered silicon nitride, either a spinel type compound having oxygen dissolved in aluminum nitride to form a solid solution or a poly-type aluminum nitride is used. Since the compound is highly stable in water, it can be effectively used in the form of an aqueous slurry mixture. As the sintering aid, this compound is used as effectively as aluminum nitride.
    Type: Grant
    Filed: March 26, 1985
    Date of Patent: September 15, 1987
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsutoshi Komeya, Michiyasu Komatsu
  • Patent number: 4680278
    Abstract: A process for preparing aluminum nitride powder, which comprises mixing (i) aluminum hydroxide powder, (ii) carbon powder or a substance capable of forming carbon powder by heating and (iii) at least one of additives selected from the group consisting of aluminum nitride powder, silicon nitride powder, silicon carbide powder and powder of substances capable of forming the powder corresponding to these powders, and baking the mixture thus obtained in a non-oxidative atmosphere containing nitrogen. The process is useful for preparing aluminum nitride powder having small particle size and small particle size distribution and also having a uniform shape of particles, at a lower temperature and in a shorter period of time.
    Type: Grant
    Filed: December 23, 1985
    Date of Patent: July 14, 1987
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Inoue, Akihiko Tsuge, Katsutoshi Komeya
  • Patent number: 4615863
    Abstract: A process for producing readily sinterable aluminum nitride powder, which comprises mixing(i) alumina powder and/or powder of a compound capable of forming alumina by heat treatment,(ii) carbon powder and/or powder of a compound capable of forming carbon by heat treatment, and(iii) powder of at least one compound selected from the group consisting of alkaline earth metal oxides, compounds capable of forming said alkaline earth metal oxides by heat treatment, rare earth element oxides and compounds capable of forming said rare earth element oxides by heat treatment,and calcining the resulting mixture in a nitrogen-containing non-oxidative atmosphere, provides an aluminum nitride powder which is readily sinterable without further mixing with a sintering aid.
    Type: Grant
    Filed: August 22, 1985
    Date of Patent: October 7, 1986
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Inoue, Akihiko Tsuge, Katsutoshi Komeya
  • Patent number: 4572844
    Abstract: There is disclosed a method for preparing a coated powder comprising the steps of adding a carbon powder and an aluminum nitride powder to a methylsilicic acid powder or a precursor of the methylsilicic acid and mixing them and then subjecting the resulting mixed powder to a heat treatment in an atmosphere including an inert gas or a carbon component-containing gas in order to coat the aluminum nitride powder with silicon carbide.This invention provides a chemically stable coated powder and a sintered body obtained by employing the coated powder has a good thermal conductivity.
    Type: Grant
    Filed: April 20, 1984
    Date of Patent: February 25, 1986
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Inoue, Akihiko Tsuge, Katsutoshi Komeya