Patents by Inventor Katsuyuki Horita
Katsuyuki Horita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9484271Abstract: Characteristics of a semiconductor device are improved. A semiconductor device of the present invention includes: (a) a MISFET arranged in an active region formed of a semiconductor region surrounded by an element isolation region; and (b) an insulating layer arranged below the active region. Further, the semiconductor device includes: (c) a p-type semiconductor region arranged below the active region so as to interpose the insulating layer; and (d) an n-type semiconductor region whose conductivity type is opposite to the p-type, arranged below the p-type semiconductor region. And, the p-type semiconductor region includes a connection region extending from below the insulating layer, and the p-type semiconductor region and a gate electrode of the MISFET are connected to each other by a shared plug which is an integrally-formed conductive film extending from above the gate electrode to above the connection region.Type: GrantFiled: April 15, 2015Date of Patent: November 1, 2016Assignee: Renesas Electronics CorporationInventors: Katsuyuki Horita, Toshiaki Iwamatsu, Hideki Makiyama, Yoshiki Yamamoto
-
Publication number: 20160181147Abstract: A first MISFET which is a semiconductor element is formed on an SOI substrate. The SOI substrate includes a supporting substrate which is a base, BOX layer which is an insulating layer formed on a main surface (surface) of the supporting substrate, that is, a buried oxide film; and an SOI layer which is a semiconductor layer formed on the BOX layer. The first MISFET as a semiconductor element is formed to the SOI layer. In an isolation region, an isolation groove is formed penetrating though the SOI layer and the BOX layer so that a bottom surface of the groove is positioned in the middle of a thickness of the supporting substrate. An isolation film is buried in the isolation groove being formed. Then, an oxidation resistant film is interposed between the BOX layer and the isolation film.Type: ApplicationFiled: February 26, 2016Publication date: June 23, 2016Inventors: Jiro YUGAMI, Toshiaki IWAMATSU, Katsuyuki HORITA, Hideki MAKIYAMA, Yasuo INOUE, Yoshiki YAMAMOTO
-
Patent number: 9343527Abstract: A first MISFET which is a semiconductor element is formed on an SOI substrate. The SOI substrate includes a supporting substrate which is a base, BOX layer which is an insulating layer formed on a main surface (surface) of the supporting substrate, that is, a buried oxide film; and an SOI layer which is a semiconductor layer formed on the BOX layer. The first MISFET as a semiconductor element is formed to the SOI layer. In an isolation region, an isolation groove is formed penetrating though the SOI layer and the BOX layer so that a bottom surface of the groove is positioned in the middle of a thickness of the supporting substrate. An isolation film is buried in the isolation groove being formed. Then, an oxidation resistant film is interposed between the BOX layer and the isolation film.Type: GrantFiled: December 2, 2012Date of Patent: May 17, 2016Assignee: Renesas Electronics CorporationInventors: Jiro Yugami, Toshiaki Iwamatsu, Katsuyuki Horita, Hideki Makiyama, Yasuo Inoue, Yoshiki Yamamoto
-
Patent number: 9287259Abstract: MISFETs after the 32 nm technology node have a High-k gate insulating film and a metal gate electrode. Such MISFETs have the problem that the absolute value of the threshold voltage of n-MISFET and p-MISFET inevitably increases by the subsequent high temperature heat treatment. The threshold voltage is therefore controlled by forming various threshold voltage adjusting metal films on a High-k gate insulating film and introducing a film component from them into the High-k gate insulating film. The present inventors have however revealed that lanthanum or the like introduced into the High-k gate insulating film of the n-MISFET is likely to transfer to the STI region by the subsequent heat treatment. The semiconductor integrated circuit device according to the present invention is provided with an N channel threshold voltage adjusting element outward diffusion preventing region in the surface portion of the element isolation region below and at the periphery of the gate stack of the n-MISFET.Type: GrantFiled: April 9, 2012Date of Patent: March 15, 2016Assignee: Renesas Electronics CorporationInventors: Hirofumi Shinohara, Yukio Nishida, Katsuyuki Horita, Tomohiro Yamashita, Hidekazu Oda
-
Patent number: 9142567Abstract: A semiconductor device with an SRAM memory cell having improved characteristics. Below an active region in which a driver transistor including a SRAM is placed, an n type back gate region surrounded by an element isolation region is provided via an insulating layer. It is coupled to the gate electrode of the driver transistor. A p well region is provided below the n type back gate region and at least partially extends to a position deeper than the element isolation region. It is fixed at a grounding potential. Such a configuration makes it possible to control the threshold potential of the transistor to be high when the transistor is ON and to be low when the transistor is OFF; and control so as not to apply a forward bias to the PN junction between the p well region and the n type back gate region.Type: GrantFiled: February 5, 2015Date of Patent: September 22, 2015Assignee: Renesas Electronics CorporationInventors: Katsuyuki Horita, Toshiaki Iwamatsu, Hideki Makiyama
-
Publication number: 20150221560Abstract: Characteristics of a semiconductor device are improved. A semiconductor device of the present invention includes: (a) a MISFET arranged in an active region formed of a semiconductor region surrounded by an element isolation region; and (b) an insulating layer arranged below the active region. Further, the semiconductor device includes: (c) a p-type semiconductor region arranged below the active region so as to interpose the insulating layer; and (d) an n-type semiconductor region whose conductivity type is opposite to the p-type, arranged below the p-type semiconductor region. And, the p-type semiconductor region includes a connection region extending from below the insulating layer, and the p-type semiconductor region and a gate electrode of the MISFET are connected to each other by a shared plug which is an integrally-formed conductive film extending from above the gate electrode to above the connection region.Type: ApplicationFiled: April 15, 2015Publication date: August 6, 2015Applicant: RENESAS ELECTRONICS CORPORATIONInventors: Katsuyuki HORITA, Toshiaki IWAMATSU, Hideki MAKIYAMA, Yoshiki YAMAMOTO
-
Publication number: 20150221722Abstract: To provide a semiconductor device provided with an element isolation structure capable of hindering an adverse effect on electric characteristics of a semiconductor element, and a method of manufacturing the same. The thickness of a first silicon oxide film left in a shallow trench isolation having a relatively narrow width is thinner than the first silicon oxide film left in a shallow trench isolation having a relatively wide width. A second silicon oxide film (an upper layer) having a relatively high compressive stress by an HDP-CVD method is more thickly laminated over the first silicon oxide film in a lower layer by a thinned thickness of the first silicon oxide film. The compressive stress of an element isolation oxide film finally formed in a shallow trench isolation having a relatively narrow width is more enhanced.Type: ApplicationFiled: April 16, 2015Publication date: August 6, 2015Inventors: Mahito SAWADA, Tatsunori KANEOKA, Katsuyuki HORITA
-
Publication number: 20150221668Abstract: A semiconductor device with an SRAM memory cell having improved characteristics. Below an active region in which a driver transistor including a SRAM is placed, an n type back gate region surrounded by an element isolation region is provided via an insulating layer. It is coupled to the gate electrode of the driver transistor. A p well region is provided below the n type back gate region and at least partially extends to a position deeper than the element isolation region. It is fixed at a grounding potential. Such a configuration makes it possible to control the threshold potential of the transistor to be high when the transistor is ON and to be low when the transistor is OFF; and control so as not to apply a forward bias to the PN junction between the p well region and the n type back gate region.Type: ApplicationFiled: February 5, 2015Publication date: August 6, 2015Inventors: Katsuyuki HORITA, Toshiaki IWAMATSU, Hideki MAKIYAMA
-
Patent number: 9029237Abstract: To provide a semiconductor device provided with an element isolation structure capable of hindering an adverse effect on electric characteristics of a semiconductor element, and a method of manufacturing the same. The thickness of a first silicon oxide film left in a shallow trench isolation having a relatively narrow width is thinner than the first silicon oxide film left in a shallow trench isolation having a relatively wide width. A second silicon oxide film (an upper layer) having a relatively high compressive stress by an HDP-CVD method is more thickly laminated over the first silicon oxide film in a lower layer by a thinned thickness of the first silicon oxide film. The compressive stress of an element isolation oxide film finally formed in a shallow trench isolation having a relatively narrow width is more enhanced.Type: GrantFiled: February 4, 2013Date of Patent: May 12, 2015Assignee: Renesas Electronics CorporationInventors: Mahito Sawada, Tatsunori Kaneoka, Katsuyuki Horita
-
Patent number: 9029951Abstract: A semiconductor device with an SRAM memory cell having improved characteristics. Below an active region in which a driver transistor including a SRAM is placed, an n type back gate region surrounded by an element isolation region is provided via an insulating layer. It is coupled to the gate electrode of the driver transistor. A p well region is provided below the n type back gate region and at least partially extends to a position deeper than the element isolation region. It is fixed at a grounding potential. Such a configuration makes it possible to control the threshold potential of the transistor to be high when the transistor is ON and to be low when the transistor is OFF; and control so as not to apply a forward bias to the PN junction between the p well region and the n type back gate region.Type: GrantFiled: July 22, 2012Date of Patent: May 12, 2015Assignee: Renesas Electronics CorporationInventors: Katsuyuki Horita, Toshiaki Iwamatsu, Hideki Makiyama
-
Patent number: 9024386Abstract: Characteristics of a semiconductor device are improved. A semiconductor device of the present invention includes: (a) a MISFET arranged in an active region formed of a semiconductor region surrounded by an element isolation region; and (b) an insulating layer arranged below the active region. Further, the semiconductor device includes: (c) a p-type semiconductor region arranged below the active region so as to interpose the insulating layer; and (d) an n-type semiconductor region whose conductivity type is opposite to the p-type, arranged below the p-type semiconductor region. And, the p-type semiconductor region includes a connection region extending from below the insulating layer, and the p-type semiconductor region and a gate electrode of the MISFET are connected to each other by a shared plug which is an integrally-formed conductive film extending from above the gate electrode to above the connection region.Type: GrantFiled: November 15, 2012Date of Patent: May 5, 2015Assignee: Renesas Electronics CorporationInventors: Katsuyuki Horita, Toshiaki Iwamatsu, Hideki Makiyama, Yoshiki Yamamoto
-
Patent number: 8975699Abstract: Improvements are achieved in the characteristics of a semiconductor device including SRAM memory cells. Under an active region in which an access transistor forming an SRAM is disposed, a p-type semiconductor region is disposed via an insulating layer such that the bottom portion and side portions thereof come in contact with an n-type semiconductor region. Thus, the p-type semiconductor region is pn-isolated from the n-type semiconductor region, and the gate electrode of the access transistor is coupled to the p-type semiconductor region. The coupling is achieved by a shared plug which is an indiscrete conductive film extending from over the gate electrode of the access transistor to over the p-type semiconductor region. As a result, when the access transistor is in an ON state, a potential in the p-type semiconductor region serving as a back gate simultaneously increases to allow an increase in an ON current for the transistor.Type: GrantFiled: September 24, 2014Date of Patent: March 10, 2015Assignee: Renesas Electronics CorporationInventors: Toshiaki Iwamatsu, Katsuyuki Horita, Hideki Makiyama
-
Publication number: 20150008522Abstract: Improvements are achieved in the characteristics of a semiconductor device including SRAM memory cells. Under an active region in which an access transistor forming an SRAM is disposed, a p-type semiconductor region is disposed via an insulating layer such that the bottom portion and side portions thereof come in contact with an n-type semiconductor region. Thus, the p-type semiconductor region is pn-isolated from the n-type semiconductor region, and the gate electrode of the access transistor is coupled to the p-type semiconductor region. The coupling is achieved by a shared plug which is an indiscrete conductive film extending from over the gate electrode of the access transistor to over the p-type semiconductor region. As a result, when the access transistor is in an ON state, a potential in the p-type semiconductor region serving as a back gate simultaneously increases to allow an increase in an ON current for the transistor.Type: ApplicationFiled: September 24, 2014Publication date: January 8, 2015Applicant: Renesas Electronics CorporationInventors: Toshiaki IWAMATSU, Katsuyuki HORITA, Hideki MAKIYAMA
-
Patent number: 8872267Abstract: Improvements are achieved in the characteristics of a semiconductor device including SRAM memory cells. Under an active region in which an access transistor forming an SRAM is disposed, a p-type semiconductor region is disposed via an insulating layer such that the bottom portion and side portions thereof come in contact with an n-type semiconductor region. Thus, the p-type semiconductor region is pn-isolated from the n-type semiconductor region, and the gate electrode of the access transistor is coupled to the p-type semiconductor region. The coupling is achieved by a shared plug which is an indiscrete conductive film extending from over the gate electrode of the access transistor to over the p-type semiconductor region. As a result, when the access transistor is in an ON state, a potential in the p-type semiconductor region serving as a back gate simultaneously increases to allow an increase in an ON current for the transistor.Type: GrantFiled: November 13, 2012Date of Patent: October 28, 2014Assignee: Renesas Electronics CorporationInventors: Toshiaki Iwamatsu, Katsuyuki Horita, Hideki Makiyama
-
Publication number: 20140035055Abstract: MISFETs after the 32 nm technology node have a High-k gate insulating film and a metal gate electrode. Such MISFETs have the problem that the absolute value of the threshold voltage of n-MISFET and p-MISFET inevitably increases by the subsequent high temperature heat treatment. The threshold voltage is therefore controlled by forming various threshold voltage adjusting metal films on a High-k gate insulating film and introducing a film component from them into the High-k gate insulating film. The present inventors have however revealed that lanthanum or the like introduced into the High-k gate insulating film of the n-MISFET is likely to transfer to the STI region by the subsequent heat treatment. The semiconductor integrated circuit device according to the present invention is provided with an N channel threshold voltage adjusting element outward diffusion preventing region in the surface portion of the element isolation region below and at the periphery of the gate stack of the n-MISFET.Type: ApplicationFiled: April 9, 2012Publication date: February 6, 2014Inventors: Hirofumi Shinohara, Yukio Nishida, Katsuyuki Horita, Tomohiro Yamashita, Hidekazu Oda
-
Patent number: 8592284Abstract: Provided are a semiconductor device making it possible to form an element region having a dimension close to a designed dimension, restrain a phenomenon similar to gate-induced drain leakage, and further restrain compressive stress to be applied to the element region by oxidation of a conductive film; and a method for manufacturing the semiconductor device. Trenches are made in a main surface of a semiconductor substrate. By oxidizing the wall surface of each of the trenches, a first oxide film is formed on the wall surface. An embedded conductive film is formed to be embedded into the trench. The embedded conductive film is oxidized in an atmosphere containing an active oxidizing species, thereby forming a second oxide film. A third oxide film is formed on the second oxide film by CVD or coating method.Type: GrantFiled: June 30, 2009Date of Patent: November 26, 2013Assignee: Renesas Electronics CorporationInventors: Masato Ishibashi, Katsuyuki Horita, Tomohiro Yamashita, Takaaki Tsunomura, Takashi Kuroi
-
Patent number: 8587085Abstract: There is provided a technology capable of providing desirable operation characteristics in a field effect transistor formed in an active region surrounded by a trench type element isolation part. An element isolation part includes trench type element isolation films, diffusion preventive films each including a silicon film or a silicon oxide film, and having a thickness of 10 to 20 nm formed over the top surfaces of the trench type element isolation films, and silicon oxide films each with a thickness of 0.5 to 2 nm formed over the top surfaces of the diffusion preventive films. The composition of the diffusion preventive film is SiOx (0?x<2). Each composition of the trench type element isolation films and the silicon oxide films is set to be SiO2.Type: GrantFiled: November 1, 2011Date of Patent: November 19, 2013Assignee: Renesas Electronics CorporationInventor: Katsuyuki Horita
-
Patent number: 8536017Abstract: A polysilazane film is formed over the main surface of a semiconductor substrate in such a manner that the upper surface level of the polysilazane film buried in a trench of 0.2 ?m or less in width becomes higher than that of a pad insulating film and the upper surface level of the polysilazane film buried in a trench of 1.0 ?m or more in width becomes lower than that of the pad insulating film. Then, heat treatment is conducted at 300° C. or more to convert the polysilazane film into a first buried film made of silicon oxide (SiO2) and remove a void in the upper portion of the narrower trench.Type: GrantFiled: January 31, 2012Date of Patent: September 17, 2013Assignee: Renesas Electronics CorporationInventors: Masaru Kadoshima, Hiroshi Umeda, Tatsunori Kaneoka, Katsuyuki Horita
-
Patent number: 8384187Abstract: To provide a semiconductor device provided with an element isolation structure capable of hindering an adverse effect on electric characteristics of a semiconductor element, and a method of manufacturing the same. The thickness of a first silicon oxide film left in a shallow trench isolation having a relatively narrow width is thinner than the first silicon oxide film left in a shallow trench isolation having a relatively wide width. A second silicon oxide film (an upper layer) having a relatively high compressive stress by an HDP-CVD method is more thickly laminated over the first silicon oxide film in a lower layer by a thinned thickness of the first silicon oxide film. The compressive stress of an element isolation oxide film finally formed in a shallow trench isolation having a relatively narrow width is more enhanced.Type: GrantFiled: April 22, 2010Date of Patent: February 26, 2013Assignee: Renesas Electronics CorporationInventors: Mahito Sawada, Tatsunori Kaneoka, Katsuyuki Horita
-
Publication number: 20130020644Abstract: A semiconductor device with an SRAM memory cell having improved characteristics. Below an active region in which a driver transistor including a SRAM is placed, an n type back gate region surrounded by an element isolation region is provided via an insulating layer. It is coupled to the gate electrode of the driver transistor. A p well region is provided below the n type back gate region and at least partially extends to a position deeper than the element isolation region. It is fixed at a grounding potential. Such a configuration makes it possible to control the threshold potential of the transistor to be high when the transistor is ON and to be low when the transistor is OFF; and control so as not to apply a forward bias to the PN junction between the p well region and the n type back gate region.Type: ApplicationFiled: July 22, 2012Publication date: January 24, 2013Inventors: Katsuyuki HORITA, Toshiaki IWAMATSU, Hideki MAKIYAMA