Patents by Inventor Katsuyuki Kishi
Katsuyuki Kishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230052473Abstract: A membrane electrode assembly that can enhance power generation performance, and a polymer electrolyte fuel cell. The membrane electrode assembly for use in a polymer electrolyte fuel cell according to an aspect of the present invention includes a polyelectrolyte membrane, a fuel electrode-side electrocatalyst layer, and an oxygen electrode-side electrocatalyst layer. The fuel electrode- and oxygen electrode-side electrocatalyst layers and contain voids which include pores having a diameter in the range of 3 nm or more and 5.5 ?m or less. When the integrated pore volume for all the pores in the fuel electrode- and oxygen electrode-side electrocatalyst layers and is a first integrated volume, the value obtained by dividing the first integrated volume by the mass of the catalytic material contained in both of the electrocatalyst layers is in the range of 2.8 or more and 4.5 or less.Type: ApplicationFiled: October 6, 2022Publication date: February 16, 2023Applicant: TOPPAN INC.Inventor: Katsuyuki KISHI
-
Patent number: 11563226Abstract: A membrane-electrode assembly including a polymer electrolyte membrane, and electrocatalyst layers disposed on both surfaces of the polymer electrolyte membrane, with a total light transmittance measured after delamination of both the electrocatalyst layers by using an adhesive member is 40% or less. The total light transmittance is at an electrocatalyst layer located part, when a total light transmittance at an electrocatalyst layer non-located part is taken to be 100%. The viscous member has an adhesive force of 3 N/10 mm or more when measured by pulling the viscous member adhered to a stainless steel in a 180°angle direction relative to the stainless steel, for delamination from the stainless steel.Type: GrantFiled: July 31, 2020Date of Patent: January 24, 2023Assignee: TOPPAN PRINTING CO., LTD.Inventor: Katsuyuki Kishi
-
Patent number: 11545674Abstract: Provided are an electrode catalyst layer for a polymer electrolyte fuel cell, which is capable of improving drainage property and gas diffusion properties and capable of high output, and a polymer electrolyte fuel cell provided with the same. An electrode catalyst layer (2, 3) bonded to a polymer electrolyte membrane (1) includes a catalyst (13), carbon particles (14), a polymer electrolyte (15) and fibrous material (16), in which the electrode catalyst layer (2,3) has a density falling within a range of 500 mg/cm3 to 900 mg/cm3, or has a density falling within a range of 400 mg/cm3 to 1000 mg/cm3, and the mass of the polymer electrolyte (15) falls within a range of 10 mass % to 200 mass % with respect to the total mass of the carbon particles (14) and the fibrous material (16).Type: GrantFiled: October 30, 2018Date of Patent: January 3, 2023Assignee: TOPPAN PRINTING CO., LTD.Inventor: Katsuyuki Kishi
-
Publication number: 20210013524Abstract: A membrane electrode assembly includes a polyelectrolyte membrane having a first surface and a second surface facing away from the first surface; a fuel-electrode-side electrocatalyst layer bonded to the first surface and containing a first catalytic material, a first electrically conductive carrier, and a first polyelectrolyte, the first electrically conductive carrier carrying the first catalytic material; and an oxygen-electrode-side electrocatalyst layer bonded to the second surface and containing a second catalytic material, a second electrically conductive carrier, a second polyelectrolyte, and a fibrous material, the second electrically conductive carrier carrying the second catalytic material. The membrane electrode assembly contains voids, the voids including pores each having a size in a range of 3 nm or more and 5.5 ?m or less.Type: ApplicationFiled: September 24, 2020Publication date: January 14, 2021Applicant: TOPPAN PRINTING CO., LTD.Inventors: Madoka OZAWA, Hiroyuki MICHI, Yuki IGARASHI, Katsuyuki KISHI
-
Publication number: 20200365922Abstract: A membrane-electrode assembly including a polymer electrolyte membrane, and electrocatalyst layers disposed on both surfaces of the polymer electrolyte membrane, with a total light transmittance measured after delamination of both the electrocatalyst layers by using an adhesive member is 40% or less. The total light transmittance is at an electrocatalyst layer located part, when a total light transmittance at an electrocatalyst layer non-located part is taken to be 100%. The viscous member has an adhesive force of 3 N/10 mm or more when measured by pulling the viscous member adhered to a stainless steel in a 180°-angle direction relative to the stainless steel, for delamination from the stainless steel.Type: ApplicationFiled: July 31, 2020Publication date: November 19, 2020Inventor: Katsuyuki KISHI
-
Publication number: 20190296367Abstract: Provided are an electrode catalyst layer for a polymer electrolyte fuel cell, which is capable of improving drainage property and gas diffusion properties and capable of high output, and a polymer electrolyte fuel cell provided with the same. An electrode catalyst layer (2, 3) bonded to a polymer electrolyte membrane (1) includes a catalyst (13), carbon particles (14), a polymer electrolyte (15) and fibrous material (16), in which the electrode catalyst layer (2,3) has a density falling within a range of 500 mg/cm3 to 900 mg/cm3, or has a density falling within a range of 400 mg/cm3 to 1000 mg/cm3, and the mass of the polymer electrolyte (15) falls within a range of 10 mass % to 200 mass % with respect to the total mass of the carbon particles (14) and the fibrous material (16).Type: ApplicationFiled: October 30, 2018Publication date: September 26, 2019Inventor: Katsuyuki KISHI
-
Patent number: 8546044Abstract: The present invention easily provides a polymer electrolyte that exhibits high proton conductivity under low humidity conditions and has a high level of durability and mechanical strength. The polymer electrolyte is produced by mixing proton-conducting sulfonated polyethersulfone C1, sulfonated polyphenylene sulfide C2 or sulfonated poly(4-phenoxybenzoyl-1,4-phenylene) C3 having a sulfonic acid group A as a protic acid group with 1,4-benzenedimethanol B as a crosslinking agent having a methylol group and heat-treating the mixture so that a reaction can be carried out. The polymer electrolyte includes a plurality of proton-conducting sulfonated polyethersulfone moieties C chemically bonded at their aromatic ring moieties other than the sulfonic acid group A to one another through a residue B? of 1,4-benzenedimethanol.Type: GrantFiled: September 23, 2009Date of Patent: October 1, 2013Assignee: Toppan Printing Co., Ltd.Inventor: Katsuyuki Kishi
-
Publication number: 20130004884Abstract: The present invention has an object to solve the problem by providing a fuel cell electrode catalyst layer with ease capable of exhibiting good output property on both low-humidified and high-humidified conditions, in a fuel cell electrode. The problem is solved in slurry including at least electrolytes, catalyst particles, and solvents, the solvents include two or more types of solvents and the two or more types of solvents cause a phase separation.Type: ApplicationFiled: March 3, 2011Publication date: January 3, 2013Inventor: Katsuyuki Kishi
-
Patent number: 8110317Abstract: The present invention readily provides an electrolyte which is capable of suppressing elution of a radical-quenching material from the electrolyte and has high proton conductivity and excellent durability. The polyelectrolyte is obtainable by chemically bonding a proton-conducting polymer having protonic acid groups to a radical-quenching material having a radical-scavenging capability via moieties other than the protonic acid groups by heating at a temperature of 60° C. or more and 250° C. or less. The proton-conducting polymer is an aromatic polymer, polyether ketone or a polyether ether ketone, or phenol resin, has a sulfonic acid group, and has a hydrogen ion exchange capacity of 0.5 meq/g or more and 10 meq/g or less. The radical-quenching material has at least one methylol group in the molecule.Type: GrantFiled: March 20, 2009Date of Patent: February 7, 2012Assignee: Toppan Printing Co., Ltd.Inventor: Katsuyuki Kishi
-
Publication number: 20100075196Abstract: The present invention easily provides a polymer electrolyte that exhibits high proton conductivity under low humidity conditions and has a high level of durability and mechanical strength. The polymer electrolyte is produced by mixing proton-conducting sulfonated polyethersulfone C1, sulfonated polyphenylene sulfide C2 or sulfonated poly(4-phenoxybenzoyl-1,4-phenylene) C3 having a sulfonic acid group A as a protic acid group with 1,4-benzenedimethanol B as a crosslinking agent having a methylol group and heat-treating the mixture so that a reaction can be carried out. The polymer electrolyte includes a plurality of proton-conducting sulfonated polyethersulfone moieties C chemically bonded at their aromatic ring moieties other than the sulfonic acid group A to one another through a residue B? of 1,4-benzenedimethanol.Type: ApplicationFiled: September 23, 2009Publication date: March 25, 2010Applicant: Toppan Printing Co., Ltd.Inventor: Katsuyuki Kishi
-
Publication number: 20090239124Abstract: The present invention readily provides an electrolyte which is capable of suppressing elution of a radical-quenching material from the electrolyte and has high proton conductivity and excellent durability. The polyelectrolyte is obtainable by chemically bonding a proton-conducting polymer having protonic acid groups to a radical-quenching material having a radical-scavenging capability via moieties other than the protonic acid groups by heating at a temperature of 60° C. or more and 250° C. or less. The proton-conducting polymer is an aromatic polymer, polyether ketone or a polyether ether ketone, or phenol resin, has a sulfonic acid group, and has a hydrogen ion exchange capacity of 0.5 meq/g or more and 10 meq/g or less. The radical-quenching material has at least one methylol group in the molecule.Type: ApplicationFiled: March 20, 2009Publication date: September 24, 2009Applicant: Toppan Printing Co., Ltd.Inventor: Katsuyuki Kishi