Patents by Inventor Kaushal Gangakhedkar

Kaushal Gangakhedkar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11810810
    Abstract: Susceptor assemblies comprising a susceptor base and a plurality of pie-shaped skins thereon are described. A pie anchor can be positioned in the center of the susceptor base to hold the pie-shaped skins in place during processing.
    Type: Grant
    Filed: December 12, 2022
    Date of Patent: November 7, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Kaushal Gangakhedkar, Kallol Bera, Joseph Yudovsky
  • Publication number: 20230146344
    Abstract: Described are apparatus and methods for processing a semiconductor wafer so that the wafer remains in place during processing. The wafer is subjected to a pressure differential between the top surface and bottom surface so that sufficient force prevents the wafer from moving during processing, the pressure differential generated by applying a decreased pressure to the back side of the wafer.
    Type: Application
    Filed: January 11, 2023
    Publication date: May 11, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Joseph Yudovsky, Kaushal Gangakhedkar
  • Publication number: 20230116396
    Abstract: Susceptor assemblies comprising a susceptor base and a plurality of pie-shaped skins thereon are described. A pie anchor can be positioned in the center of the susceptor base to hold the pie-shaped skins in place during processing.
    Type: Application
    Filed: December 12, 2022
    Publication date: April 13, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Kaushal Gangakhedkar, Kallol Bera, Joseph Yudovsky
  • Patent number: 11560804
    Abstract: Methods for forming protective coatings on aerospace components are provided. In one or more embodiments, the method includes exposing an aerospace component to a first precursor and a first reactant to form a first deposited layer on a surface of the aerospace component by a first deposition process (e.g., CVD or ALD), and exposing the aerospace component to a second precursor and a second reactant to form a second deposited layer on the first deposited layer by a second deposition process. The first deposited layer and the second deposited layer have different compositions from each other. The method also includes repeating the first deposition process and the second deposition process to form a nanolaminate film stack having from 2 pairs to about 1,000 pairs of the first deposited layer and the second deposited layer consecutively deposited on each other.
    Type: Grant
    Filed: June 3, 2022
    Date of Patent: January 24, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yuriy Melnik, Sukti Chatterjee, Kaushal Gangakhedkar, Jonathan Frankel, Lance A. Scudder, Pravin K. Narwankar, David Alexander Britz, Thomas Knisley, Mark Saly, David Thompson
  • Patent number: 11557501
    Abstract: Susceptor assemblies comprising a susceptor base and a plurality of pie-shaped skins thereon are described. A pie anchor can be positioned in the center of the susceptor base to hold the pie-shaped skins in place during processing.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: January 17, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Kaushal Gangakhedkar, Kallol Bera, Joseph Yudovsky
  • Publication number: 20220298920
    Abstract: Methods for forming protective coatings on aerospace components are provided. In one or more embodiments, the method includes exposing an aerospace component to a first precursor and a first reactant to form a first deposited layer on a surface of the aerospace component by a first deposition process (e.g., CVD or ALD), and exposing the aerospace component to a second precursor and a second reactant to form a second deposited layer on the first deposited layer by a second deposition process. The first deposited layer and the second deposited layer have different compositions from each other. The method also includes repeating the first deposition process and the second deposition process to form a nanolaminate film stack having from 2 pairs to about 1,000 pairs of the first deposited layer and the second deposited layer consecutively deposited on each other.
    Type: Application
    Filed: June 3, 2022
    Publication date: September 22, 2022
    Inventors: Yuriy MELNIK, Sukti CHATTERJEE, Kaushal GANGAKHEDKAR, Jonathan FRANKEL, Lance A. SCUDDER, Pravin K. NARWANKAR, David Alexander BRITZ, Thomas KNISLEY, Mark SALY, David THOMPSON
  • Patent number: 11430680
    Abstract: Apparatus and methods of measuring and controlling the gap between a susceptor assembly and a gas distribution assembly are described. Apparatus and methods for positional control and temperature control for wafer transfer purposes are also described.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: August 30, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Abraham Ravid, Kevin Griffin, Joseph Yudovsky, Kaushal Gangakhedkar, Dmitry A. Dzilno, Alex Minkovich
  • Patent number: 11384648
    Abstract: Protective coatings on an aerospace component are provided. An aerospace component includes a surface containing nickel, nickel superalloy, aluminum, chromium, iron, titanium, hafnium, alloys thereof, or any combination thereof, and a coating disposed on the surface, where the coating contains a nanolaminate film stack having two or more pairs of a first deposited layer and a second deposited layer. The first deposited layer contains chromium oxide, chromium nitride, aluminum oxide, aluminum nitride, or any combination thereof, the second deposited layer contains aluminum oxide, aluminum nitride, silicon oxide, silicon nitride, silicon carbide, yttrium oxide, yttrium nitride, yttrium silicon nitride, hafnium oxide, hafnium nitride, hafnium silicide, hafnium silicate, titanium oxide, titanium nitride, titanium silicide, titanium silicate, or any combination thereof, and the first deposited layer and the second deposited layer have different compositions from each other.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: July 12, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yuriy Melnik, Sukti Chatterjee, Kaushal Gangakhedkar, Jonathan Frankel, Lance A. Scudder, Pravin K. Narwankar, David Alexander Britz, Thomas Knisley, Mark Saly, David Thompson
  • Publication number: 20220186372
    Abstract: A reactor for coating particles includes a vacuum chamber configured to hold particles to be coated, a vacuum port to exhaust gas from the vacuum chamber via the outlet of the vacuum chamber, a chemical delivery system configured to flow a process gas into the particles via a gas inlet on the vacuum chamber, one or more vibrational actuators located on a first mounting surface of the vacuum chamber, and a controller configured to cause the one or more vibrational actuators to generate a vibrational motion in the vacuum chamber sufficient to induce a vibrational motion in the particles held within the vacuum chamber.
    Type: Application
    Filed: February 1, 2022
    Publication date: June 16, 2022
    Inventors: Kaushal Gangakhedkar, Jonathan Frankel, Colin C. Neikirk, Pravin K. Narwankar
  • Publication number: 20220064794
    Abstract: A reactor for coating particles includes one or more motors, a rotary vacuum chamber configured to hold particles to be coated, wherein the rotary vacuum chamber is coupled to the motors, a controller configured to cause the motors to rotate the rotary vacuum chamber about an axial axis of the rotary vacuum chamber such that the particles undergo tumbling agitation, a vacuum port to exhaust gas from the rotary vacuum chamber, a paddle assembly including a rotatable drive shaft extending through the rotary vacuum chamber and coupled to the motors and at least one paddle extending radially from the drive shaft, such that rotation of the drive shaft by the motors orbits the paddle about the drive shaft in a second direction, and a chemical delivery system including a gas outlet on the paddle configured inject process gas into the particles.
    Type: Application
    Filed: November 9, 2021
    Publication date: March 3, 2022
    Inventors: Colin C. Neikirk, Pravin K. Narwankar, Kaushal Gangakhedkar, Visweswaren Sivaramakrishnan, Jonathan Frankel, David Masayuki Ishikawa, Quoc Truong, Joseph Yudovsky
  • Patent number: 11242599
    Abstract: A reactor for coating particles includes a vacuum chamber configured to hold particles to be coated, a vacuum port to exhaust gas from the vacuum chamber via the outlet of the vacuum chamber, a chemical delivery system configured to flow a process gas into the particles via a gas inlet on the vacuum chamber, one or more vibrational actuators located on a first mounting surface of the vacuum chamber, and a controller configured to cause the one or more vibrational actuators to generate a vibrational motion in the vacuum chamber sufficient to induce a vibrational motion in the particles held within the vacuum chamber.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: February 8, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Kaushal Gangakhedkar, Jonathan Frankel, Colin C. Neikirk, Pravin K. Narwankar
  • Publication number: 20210384063
    Abstract: Described are apparatus and methods for processing a semiconductor wafer so that the wafer remains in place during processing. The wafer is subjected to a pressure differential between the top surface and bottom surface so that sufficient force prevents the wafer from moving during processing, the pressure differential generated by applying a decreased pressure to the back side of the wafer.
    Type: Application
    Filed: August 16, 2021
    Publication date: December 9, 2021
    Inventors: Joseph Yudovsky, Kaushal Gangakhedkar
  • Patent number: 11180851
    Abstract: A reactor for coating particles includes one or more motors, a rotary vacuum chamber configured to hold particles to be coated and coupled to the motors, a controller configured to cause the motors to rotate the chamber in a first direction about an axial axis at a rotation speed sufficient to force the particles to be centrifuged against an inner diameter of the chamber, a vacuum port to exhaust gas from the rotary vacuum chamber, a paddle assembly including a rotatable drive shaft extending through the chamber and coupled to the motors and at least one paddle extending radially from the drive shaft, such that rotation of the drive shaft by the motors orbits the paddle about the drive shaft in a second direction, and a chemical delivery system including a gas outlet on the paddle configured inject process gas into the particles.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: November 23, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Colin C. Neikirk, Pravin K. Narwankar, Kaushal Gangakhedkar, Visweswaren Sivaramakrishnan, Jonathan Frankel, David Masayuki Ishikawa, Quoc Truong, Joseph Yudovsky
  • Patent number: 11180846
    Abstract: Pedestal assemblies with a thermal barrier plate, a torque plate and at least one kinematic mount to change a plane formed by the thermal barrier plate are described. Susceptor assemblies and processing chambers incorporating the pedestal assemblies are also described. Methods of leveling a susceptor to form parallel planes between the susceptor surface and a gas distribution assembly surface are also described.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: November 23, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Kaushal Gangakhedkar
  • Patent number: 11174552
    Abstract: A reactor for coating particles includes one or more motors, a rotary vacuum chamber configured to hold particles to be coated, wherein the rotary vacuum chamber is coupled to the motors, a controller configured to cause the motors to rotate the rotary vacuum chamber about an axial axis of the rotary vacuum chamber such that the particles undergo tumbling agitation, a vacuum port to exhaust gas from the rotary vacuum chamber, a paddle assembly including a rotatable drive shaft extending through the rotary vacuum chamber and coupled to the motors and at least one paddle extending radially from the drive shaft, such that rotation of the drive shaft by the motors orbits the paddle about the drive shaft in a second direction, and a chemical delivery system including a gas outlet on the paddle configured inject process gas into the particles.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: November 16, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Colin C. Neikirk, Pravin K. Narwankar, Kaushal Gangakhedkar, Visweswaren Sivaramakrishnan, Jonathan Frankel, David Masayuki Ishikawa, Quoc Truong, Joseph Yudovsky
  • Patent number: 11094577
    Abstract: Described are apparatus and methods for processing a semiconductor wafer so that the wafer remains in place during processing. The wafer is subjected to a pressure differential between the top surface and bottom surface so that sufficient force prevents the wafer from moving during processing, the pressure differential generated by applying a decreased pressure to the back side of the wafer.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: August 17, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Joseph Yudovsky, Kaushal Gangakhedkar
  • Patent number: 10861736
    Abstract: Apparatus and method for processing a plurality of substrates in a batch processing chamber are described. The apparatus comprises a susceptor assembly, a lift assembly and a rotation assembly. The susceptor assembly has a top surface and a bottom surface with a plurality of recesses in the top surface. Each of the recesses has a lift pocket in the recess bottom. The lift assembly including a lift plate having a top surface to contact the substrate. The lift plate is connected to a lift shaft that extends through the susceptor assembly and connects to a lift friction pad. The rotation assembly has a rotation friction pad that contacts the lift friction pad. The rotation friction pad is connected to a rotation shaft and can be vertically aligned with the lift friction pad.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: December 8, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Kaushal Gangakhedkar, Joseph Yudovsky
  • Publication number: 20200312702
    Abstract: Susceptor assemblies comprising a susceptor base and a plurality of pie-shaped skins thereon are described. A pie anchor can be positioned in the center of the susceptor base to hold the pie-shaped skins in place during processing.
    Type: Application
    Filed: June 15, 2020
    Publication date: October 1, 2020
    Inventors: Kaushal Gangakhedkar, Kallol Bera, Joseph Yudovsky
  • Patent number: 10774006
    Abstract: Methods comprise loading an article comprising a ceramic coating into an induction heating system or a microwave heating system and heat treating the ceramic coating using the microwave heating system or the induction heating system within a temperature range for a duration of about 1-15 minutes.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: September 15, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kaushal Gangakhedkar, Jennifer Y. Sun
  • Patent number: 10766824
    Abstract: Methods comprise performing two or more thermal cycles on an article comprising a body and a ceramic coating. Each thermal cycle of the two or more thermal cycles comprise heating the ceramic article to a target temperature at a first ramping rate. Each thermal cycle further comprises maintaining the article at the target temperature for a first duration of time and then cooling the article to a second target temperature at a second ramping rate. The method further comprises submerging the article in a bath for a second duration of time to remove the particles from the ceramic coating.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: September 8, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kaushal Gangakhedkar, Jennifer Y. Sun, Xiao-Ming He