Patents by Inventor Kaushik Vaidyanathan

Kaushik Vaidyanathan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240094799
    Abstract: The technology is generally directed to a coordinated power throttling mechanism for a payload using power provided by a rack such that the rack power does not exceed a threshold amount for greater than a predetermined period of time. The coordinated power throttling mechanism includes the rack providing a power throttling signal to the payload and the payload executing the power throttling upon detection of the throttling signal. The payload may detect the throttling signal and, after a delay, execute the power throttling. The delay may ensure that all payloads within the rack have detected the power throttling signal.
    Type: Application
    Filed: August 24, 2022
    Publication date: March 21, 2024
    Inventors: Xiong Li, Xin Li, Qiong Wang, Kaushik Vaidyanathan, Chenhao Nan, Robert Ashby Armistead, III
  • Publication number: 20230318456
    Abstract: Controlling voltage supplied to a load includes predicting a load current transient, generating a turbo signal in response to predicting the load current transient, and increasing, in response to the turbo signal, responsiveness of a voltage regulator supplying voltage to the load.
    Type: Application
    Filed: April 4, 2022
    Publication date: October 5, 2023
    Applicant: Google LLC
    Inventors: Chenhao Nan, Qiong Wang, Kaushik Vaidyanathan, Houle Gan, Xin Li
  • Patent number: 11734174
    Abstract: Described is an low overhead method and apparatus to reconfigure a pair of buffered interconnect links to operate in one of these three modes—first mode (e.g., bandwidth mode), second mode (e.g., latency mode), and third mode (e.g., energy mode). In bandwidth mode, each link in the pair buffered interconnect links carries a unique signal from source to destination. In latency mode, both links in the pair carry the same signal from source to destination, where one link in the pair is “primary” and other is called the “assist”. Temporal alignment of transitions in this pair of buffered interconnects reduces the effective capacitance of primary, thereby reducing delay or latency. In energy mode, one link in the pair, the primary, alone carries a signal, while the other link in the pair is idle. An idle neighbor on one side reduces energy consumption of the primary.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: August 22, 2023
    Assignee: Intel Corporation
    Inventors: Huichu Liu, Tanay Karnik, Tejpal Singh, Yen-Cheng Liu, Lavanya Subramanian, Mahesh Kumashikar, Sri Harsha Choday, Sreenivas Subramoney, Kaushik Vaidyanathan, Daniel H. Morris, Uygar E. Avci, Ian A. Young
  • Patent number: 11411172
    Abstract: An apparatus is provided which comprises a full adder including magnetoelectric material and spin orbit material. In some embodiments, the adder includes: a 3-bit carry generation structure and a multi-bit sum generation structure coupled to the 3-bit carry generation structure. In some embodiments, the 3-bit carry generation structure includes at least three cells comprising magnetoelectric material and spin orbit material, wherein the 3-bit carry generation structure is to perform a minority logic operation on first, second, and third inputs to generate a carry output. In some embodiments, the multi-bit sum generation structure includes at least four cells comprising magnetoelectric material and spin orbit material, wherein the multi-bit sum generation structure is to perform a minority logic operation on the first, second, and third inputs and the carry output to generate a sum output.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: August 9, 2022
    Assignee: Intel Corporation
    Inventors: Huichu Liu, Sasikanth Manipatruni, Daniel Morris, Kaushik Vaidyanathan, Tanay Karnik, Ian Young
  • Patent number: 11387404
    Abstract: An apparatus is provided which comprises one or more magnetoelectric spin orbit (MESO) minority gates with different peripheral complementary metal oxide semiconductor (CMOS) circuit techniques in the device layer including: (1) current mirroring, (2) complementary supply voltages, (3) asymmetrical transistor sizing, and (4) using transmission gates. These MESO minority gates use the multi-phase clock to prevent back propagation of current so that MESO gate can correctly process the input data.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: July 12, 2022
    Assignee: Intel Corporation
    Inventors: Huichu Liu, Tanay Karnik, Sasikanth Manipatruni, Daniel Morris, Kaushik Vaidyanathan, Ian Young
  • Patent number: 11043256
    Abstract: Described are mechanisms and methods for amortizing the cost of address decode, row-decode and wordline firing across multiple read accesses (instead of just on one read access). Some or all memory locations that share a wordline (WL) may be read, by walking through column multiplexor addresses (instead of just reading out one column multiplexor address per WL fire or memory access). The mechanisms and methods disclosed herein may advantageously enable N distinct memory words to be read out if the array uses an N-to-1 column multiplexor. Since memories such as embedded DRAMs (eDRAMs) may undergo a destructive read, for a given WL fire, a design may be disposed to sense N distinct memory words and restore them in order.
    Type: Grant
    Filed: June 29, 2019
    Date of Patent: June 22, 2021
    Assignee: Intel Corporation
    Inventors: Kaushik Vaidyanathan, Huichu Liu, Tanay Karnik, Sreenivas Subramoney, Jayesh Gaur, Sudhanshu Shukla
  • Patent number: 11037614
    Abstract: Described is an apparatus to reduce or eliminate imprint charge, wherein the apparatus which comprises: a source line; a bit-line; a memory bit-cell coupled to the source line and the bit-line; a first multiplexer coupled to the bit-line; a second multiplexer coupled to the source-line; a first driver coupled to the first multiplexer; a second driver coupled to the second multiplexer; and a current source coupled to the first and second drivers.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: June 15, 2021
    Assignee: Intel Corporation
    Inventors: Huichu Liu, Sasikanth Manipatruni, Ian A. Young, Tanay Karnik, Daniel H. Morris, Kaushik Vaidyanathan
  • Publication number: 20210089448
    Abstract: Described is an low overhead method and apparatus to reconfigure a pair of buffered interconnect links to operate in one of these three modes—first mode (e.g., bandwidth mode), second mode (e.g., latency mode), and third mode (e.g., energy mode). In bandwidth mode, each link in the pair buffered interconnect links carries a unique signal from source to destination. In latency mode, both links in the pair carry the same signal from source to destination, where one link in the pair is “primary” and other is called the “assist”. Temporal alignment of transitions in this pair of buffered interconnects reduces the effective capacitance of primary, thereby reducing delay or latency. In energy mode, one link in the pair, the primary, alone carries a signal, while the other link in the pair is idle. An idle neighbor on one side reduces energy consumption of the primary.
    Type: Application
    Filed: September 19, 2019
    Publication date: March 25, 2021
    Applicant: Intel Corporation
    Inventors: Huichu Liu, Tanay Karnik, Tejpal Singh, Yen-Cheng Liu, Lavanya Subramanian, Mahesh Kumashikar, Sri Harsha Chodav, Sreenivas Subramoney, Kaushik Vaidyanathan, Daniel H. Morris, Uygar E. Avci, Ian A. Young
  • Patent number: 10901486
    Abstract: Described is an apparatus which comprises: a first electrical path comprising at least one driver and receiver; and a second electrical path comprising at least one driver and receiver, wherein the first and second electrical paths are to receive a same input signal, wherein the first electrical path and the second electrical path are parallel to one another and have substantially the same propagation delays, and wherein the second electrical path is enabled during a first operation mode and disabled during a second operation mode.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: January 26, 2021
    Assignee: Intel Corporation
    Inventors: Kaushik Vaidyanathan, Daniel H. Morris, Uygar E. Avci, Ian A. Young, Tanay Karnik, Huichu Liu
  • Publication number: 20200411079
    Abstract: Described are mechanisms and methods for amortizing the cost of address decode, row-decode and wordline firing across multiple read accesses (instead of just on one read access). Some or all memory locations that share a wordline (WL) may be read, by walking through column multiplexor addresses (instead of just reading out one column multiplexor address per WL fire or memory access). The mechanisms and methods disclosed herein may advantageously enable N distinct memory words to be read out if the array uses an N-to-1 column multiplexor. Since memories such as embedded DRAMs (eDRAMs) may undergo a destructive read, for a given WL fire, a design may be disposed to sense N distinct memory words and restore them in order.
    Type: Application
    Filed: June 29, 2019
    Publication date: December 31, 2020
    Applicant: Intel Corporation
    Inventors: Kaushik Vaidyanathan, Huichu Liu, Tanay Karnik, Sreenivas Subramoney, Jayesh Gaur, Sudhanshu Shukla
  • Patent number: 10777250
    Abstract: Embodiments include apparatuses, methods, and systems associated with save-restore circuitry including metal-ferroelectric-metal (MFM) devices. The save-restore circuitry may be coupled to a bit node and/or bit bar node of a pair of cross-coupled inverters to save the state of the bit node and/or bit bar node when an associated circuit block transitions to a sleep state, and restore the state of the bit node and/or bit bar node when the associated circuit block transitions from the sleep state to an active state. The save-restore circuitry may be used in a flip-flop circuit, a register file circuit, and/or another suitable type of circuit. The save-restore circuitry may include a transmission gate coupled between the bit node (or bit bar node) and an internal node, and an MFM device coupled between the internal node and a plate line. Other embodiments may be described and claimed.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: September 15, 2020
    Assignee: Intel Corporation
    Inventors: Kaushik Vaidyanathan, Daniel H. Morris, Huichu Liu, Dileep J. Kurian, Uygar E. Avci, Tanay Karnik, Ian A. Young
  • Patent number: 10749104
    Abstract: Some embodiments include apparatuses having a first magnet, a first stack of layers coupled to a first portion of the first magnet, a first layer coupled to a second portion of the first magnet, a second magnet, a second stack of layers coupled to a first portion of the second magnet, a second layer coupled to a second portion of the second magnet, a conductor coupled to the first stack of layers and to the second layer, and a conductive path coupled to the first portion of the first magnet and to the first portion of the second magnet, each of the first and second layers including a magnetoelectric material, each of the first and second stacks of layers providing an inverse spin orbit coupling effect.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: August 18, 2020
    Assignee: Intel Corporation
    Inventors: Huichu Liu, Daniel Morris, Tanay Karnik, Sasikanth Manipatruni, Kaushik Vaidyanathan, Ian Young
  • Patent number: 10748602
    Abstract: One embodiment provides an apparatus. The apparatus includes a pair of nonvolatile resistive random access memory (RRAM) memory cells coupled to a volatile static RAM (SRAM) memory cell. The pair of nonvolatile RRAM memory cells includes a first RRAM memory cell and a second RRAM memory cell. The first RRAM memory cell includes a first resistive memory element coupled to a first bit line, and a first selector transistor coupled between the first resistive memory element and a first output node of the volatile SRAM memory cell. The second RRAM memory cell includes a second resistive memory element coupled to a second bit line, and a second selector transistor coupled between the second resistive memory element and a second output node of the volatile SRAM memory cell.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: August 18, 2020
    Assignee: Intel Corporation
    Inventors: Huichu Liu, Sasikanth Manipatruni, Daniel H. Morris, Kaushik Vaidyanathan, Niloy Mukherjee, Dmitri E. Nikonov, Ian Young, Tanay Karnik
  • Publication number: 20200194663
    Abstract: Some embodiments include apparatuses having a first magnet, a first stack of layers coupled to a first portion of the first magnet, a first layer coupled to a second portion of the first magnet, a second magnet, a second stack of layers coupled to a first portion of the second magnet, a second layer coupled to a second portion of the second magnet, a conductor coupled to the first stack of layers and to the second layer, and a conductive path coupled to the first portion of the first magnet and to the first portion of the second magnet, each of the first and second layers including a magnetoelectric material, each of the first and second stacks of layers providing an inverse spin orbit coupling effect.
    Type: Application
    Filed: December 12, 2018
    Publication date: June 18, 2020
    Inventors: Huichu Liu, Daniel Morris, Tanay Karnik, Sasikanth Manipatruni, Kaushik Vaidyanathan, Ian Young
  • Publication number: 20200098415
    Abstract: Described is an apparatus to reduce or eliminate imprint charge, wherein the apparatus which comprises: a source line; a bit-line; a memory bit-cell coupled to the source line and the bit-line; a first multiplexer coupled to the bit-line; a second multiplexer coupled to the source-line; a first driver coupled to the first multiplexer; a second driver coupled to the second multiplexer; and a current source coupled to the first and second drivers.
    Type: Application
    Filed: July 23, 2018
    Publication date: March 26, 2020
    Applicant: Intel Corporation
    Inventors: Huichu Liu, Sasikanth Manipatruni, Ian A. Young, Tanay Karnik, Daniel H. Morris, Kaushik Vaidyanathan
  • Publication number: 20200091407
    Abstract: An apparatus is provided which comprises one or more magnetoelectric spin orbit (MESO) minority gates with different peripheral complementary metal oxide semiconductor (CMOS) circuit techniques in the device layer including: (1) current mirroring, (2) complementary supply voltages, (3) asymmetrical transistor sizing, and (4) using transmission gates. These MESO minority gates use the multi-phase clock to prevent back propagation of current so that MESO gate can correctly process the input data.
    Type: Application
    Filed: September 13, 2018
    Publication date: March 19, 2020
    Inventors: Huichu LIU, Tanay KARNIK, Sasikanth MANIPATRUNI, Daniel MORRIS, Kaushik VAIDYANATHAN, Ian YOUNG
  • Publication number: 20200091414
    Abstract: An apparatus is provided which comprises a full adder including magnetoelectric material and spin orbit material. In some embodiments, the adder includes: a 3-bit carry generation structure and a multi-bit sum generation structure coupled to the 3-bit carry generation structure. In some embodiments, the 3-bit carry generation structure includes at least three cells comprising magnetoelectric material and spin orbit material, wherein the 3-bit carry generation structure is to perform a minority logic operation on first, second, and third inputs to generate a carry output. In some embodiments, the multi-bit sum generation structure includes at least four cells comprising magnetoelectric material and spin orbit material, wherein the multi-bit sum generation structure is to perform a minority logic operation on the first, second, and third inputs and the carry output to generate a sum output.
    Type: Application
    Filed: September 13, 2018
    Publication date: March 19, 2020
    Inventors: Huichu Liu, Sasikanth Manipatruni, Daniel Morris, Kaushik Vaidyanathan, Tanay Karnik, Ian Young
  • Patent number: 10559348
    Abstract: In one embodiment, an apparatus includes a memory array having a plurality of memory cells, a plurality of bitlines coupled to the plurality of memory cells, and a plurality of wordlines coupled to the plurality of memory cells. The memory array may further include a sense amplifier circuit to sense and amplify a value stored in a memory cell of the plurality of memory cells. The sense amplifier circuit may include: a buffer circuit to store the value, the buffer circuit coupled between a first internal node of the sense amplifier circuit and a second internal node of the sense amplifier circuit; and an equalization circuit to equalize the first internal node and the second internal node while the sense amplifier circuit is decoupled from the memory array. Other embodiments are described and claimed.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: February 11, 2020
    Assignee: Intel Corporation
    Inventors: Lavanya Subramanian, Kaushik Vaidyanathan, Anant Nori, Sreenivas Subramoney, Tanay Karnik
  • Publication number: 20190355411
    Abstract: In one embodiment, an apparatus includes a memory array having a plurality of memory cells, a plurality of bitlines coupled to the plurality of memory cells, and a plurality of wordlines coupled to the plurality of memory cells. The memory array may further include a sense amplifier circuit to sense and amplify a value stored in a memory cell of the plurality of memory cells. The sense amplifier circuit may include: a buffer circuit to store the value, the buffer circuit coupled between a first internal node of the sense amplifier circuit and a second internal node of the sense amplifier circuit; and an equalization circuit to equalize the first internal node and the second internal node while the sense amplifier circuit is decoupled from the memory array. Other embodiments are described and claimed.
    Type: Application
    Filed: May 16, 2018
    Publication date: November 21, 2019
    Inventors: Lavanya Subramanian, Kaushik Vaidyanathan, Anant Nori, Sreenivas Subramoney, Tanay Karnik
  • Patent number: 10393796
    Abstract: In one aspect, a method comprises providing at least two identical front-end-of-line (FEOL) portions of an integrated circuit (IC) in a single wafer, with at least some of each FEOL portion comprising a plurality of circuit elements; building a design back-end-of-line (BEOL) portion of the IC on at least one of the FEOL portions to form a product chip, with the design BEOL portion configuring design-type interconnections of the same plurality of circuit elements for a first instantiation; building a test-only BEOL structure on at least one of the FEOL portions to form a sacrificial test device, with the test-only BEOL structure configuring test-type interconections of the same plurality of circuit elements for a second instantiation; and testing the sacrificial test device for at least one of functionality or reliability.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: August 27, 2019
    Assignee: Carnegie Mellon University
    Inventors: Lawrence Pileggi, Bishnu P. Das, Kaushik Vaidyanathan