Patents by Inventor Kayyani C. Adiga

Kayyani C. Adiga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12144947
    Abstract: A method for removing bodily fluid includes drawing bodily fluid that has accumulated in excess, converting the drawn fluid from bulk liquid form to aerosol form, and disposing of the aerosol via evaporation of liquid droplets and absorption and/or diffusion of vapor. Conversion from bulk liquid to aerosol may include collecting the bulk liquid fluid in a reservoir, conveying the bulk liquid bodily fluid to an atomizer, converting the bulk liquid fluid into an aerosol having ultrafine droplets, and ejecting the aerosol into a subcutaneous space for disposal via evaporation of liquid droplets and absorption and/or diffusion of vapors. The method may be performed with a subcutaneous atomizer that may be controlled locally or by an external transmitter for effecting a conversion and mist rate to keep pace with the accumulation of excess bodily fluid.
    Type: Grant
    Filed: September 14, 2022
    Date of Patent: November 19, 2024
    Assignee: Augusta University Research Institute, Inc.
    Inventors: Cargill H. Alleyne, Jr., Kayyani C. Adiga
  • Publication number: 20230001166
    Abstract: A method for removing bodily fluid includes drawing bodily fluid that has accumulated in excess, converting the drawn fluid from bulk liquid form to aerosol form, and disposing of the aerosol via evaporation of liquid droplets and absorption and/or diffusion of vapor. Conversion from bulk liquid to aerosol may include collecting the bulk liquid fluid in a reservoir, conveying the bulk liquid bodily fluid to an atomizer, converting the bulk liquid fluid into an aerosol having ultrafine droplets, and ejecting the aerosol into a subcutaneous space for disposal via evaporation of liquid droplets and absorption and/or diffusion of vapors. The method may be performed with a subcutaneous atomizer that may be controlled locally or by an external transmitter for effecting a conversion and mist rate to keep pace with the accumulation of excess bodily fluid.
    Type: Application
    Filed: September 14, 2022
    Publication date: January 5, 2023
    Inventors: Cargill H. ALLEYNE, Kayyani C. ADIGA
  • Patent number: 11458288
    Abstract: A method for removing bodily fluid includes drawing bodily fluid that has accumulated in excess, converting the drawn fluid from bulk liquid form to aerosol form, and disposing of the aerosol via evaporation of liquid droplets and absorption and/or diffusion of vapor. Conversion from bulk liquid to aerosol may include collecting the bulk liquid fluid in a reservoir, conveying the bulk liquid bodily fluid to an atomizer, converting the bulk liquid fluid into an aerosol having ultrafine droplets, and ejecting the aerosol into a subcutaneous space for disposal via evaporation of liquid droplets and absorption and/or diffusion of vapors. The method may be performed with a subcutaneous atomizer that may be controlled locally or by an external transmitter for effecting a conversion and mist rate to keep pace with the accumulation of excess bodily fluid.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: October 4, 2022
    Assignee: AUGUSTA UNIVERSITY RESEARCH INSTITUTE, INC.
    Inventors: Cargill H. Alleyne, Jr., Kayyani C. Adiga
  • Publication number: 20210299491
    Abstract: The present disclosure provides a method and a device for suppressing fire due to combustible gases generated from an energy storage unit. The device includes a substrate (102), a catalyst (103) coated on the substrate (102) and the catalyst coated substrate (101) placed with the energy storage unit for suppressing raging fire.
    Type: Application
    Filed: March 19, 2021
    Publication date: September 30, 2021
    Inventors: KAYYANI C ADIGA, RAJANI ADIGA, Herbert Wayne Graves
  • Publication number: 20190329009
    Abstract: A method for removing bodily fluid includes drawing bodily fluid that has accumulated in excess, converting the drawn fluid from bulk liquid form to aerosol form, and disposing of the aerosol via evaporation of liquid droplets and absorption and/or diffusion of vapor. Conversion from bulk liquid to aerosol may include collecting the bulk liquid fluid in a reservoir, conveying the bulk liquid bodily fluid to an atomizer, converting the bulk liquid fluid into an aerosol having ultrafine droplets, and ejecting the aerosol into a subcutaneous space for disposal via evaporation of liquid droplets and absorption and/or diffusion of vapors. The method may be performed with a subcutaneous atomizer that may be controlled locally or by an external transmitter for effecting a conversion and mist rate to keep pace with the accumulation of excess bodily fluid.
    Type: Application
    Filed: April 25, 2019
    Publication date: October 31, 2019
    Inventors: Cargill H. ALLEYNE, JR., Kayyani C. ADIGA
  • Patent number: 10238761
    Abstract: The present invention is an improved method for decontamination of a space and an integrated device that completes the decontamination cycle extremely fast while still being compact, lightweight, simple to operate and easy to move as a single unit. The method of the present invention delivers less biocide than is used in prior art methods at a very high rate of flux, allows the biocide to reside in the space being decontaminated to achieve a predetermined kill level, and then aerates the space. Because a nominal amount of biocide is used, there is less biocide to remove from the space than in prior art methods thereby reducing the time required for aeration and shortening the downtime for safe entry of the facility.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: March 26, 2019
    Assignee: Nanomist Systems, LLC
    Inventors: Kayyani C. Adiga, Rajani Adiga, Robert F. Hatcher, Jr.
  • Patent number: 9533064
    Abstract: A mist generator is used to deliver a high throughput extremely fine mist comprising a biocide. Flows of evaporating hot gas mix turbulently and enhance forced heat and mass transfer between the very fine droplets and the hot gas to form a well-mixed premixed evaporator, resulting in high humidity vapor formation well inside a tube. The high relative humidity vapor with elevated temperature is then condensed as it exits the tube and disperses into the volume to be decontaminated as a condensed vapor cloud, but neither as a mist nor as a pure vapor depending on temperature and humidity of room environment. The condensed vapor cloud may evaporate or settle on the volume surfaces and contents, whereby both dry vapor and condensed vapor are applied into the volume for the killing process.
    Type: Grant
    Filed: July 18, 2013
    Date of Patent: January 3, 2017
    Assignee: Nanomist Systems, LLC
    Inventors: Kayyani C. Adiga, Robert F. Hatcher, Rajani Adiga
  • Patent number: 8790575
    Abstract: An apparatus and method are disclosed for improving the efficiency of an aerator which is used for removing residual biocide used for decontamination, sterilization, sanitation, or disinfection processes. The apparatus comprises an aerator assembly that produces an optimum air flow region and a high surface area catalyst panel. The method comprises utilizing the apparatus with optimizing gas flow rates, residence time of the contaminated gas within the catalyst panel, air flow pattern, air transport rate, cleaned air discharge pattern, and the nature and configuration of the catalyst.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: July 29, 2014
    Assignee: Nano Mist Systems, LLC
    Inventors: Kayyani C. Adiga, Rajani Adiga, Robert F. Hatcher, Jr.
  • Publication number: 20120125197
    Abstract: A decontamination apparatus is disclosed. The decontamination apparatus comprises a mist generator configured to generate a mist, a first conduit in fluid communication with the mist generator and configured to receive the mist, a stream movement device configured to move a stream, and a heating device configured to heat the stream moved by the stream movement device. The decontamination apparatus comprises a second conduit in fluid communication with the stream movement device and configured to receive the heated stream. The first conduit comprises a first outlet configured to pass the mist therethrough and the second conduit comprises a second outlet configured to pass the heated stream therethrough. The second outlet is positioned proximate to the first outlet. A portion of the mist evaporates into a vapor for decontamination of an environment when mixed with the heated stream outside of the first outlet, the second outlet, and the decontamination apparatus.
    Type: Application
    Filed: November 22, 2010
    Publication date: May 24, 2012
    Applicant: Ethicon, Inc.
    Inventors: Szu-Min Lin, Robert C. Platt, JR., Robert G. Lukasik, Kayyani C. Adiga, Rajani Adiga, Robert F. Hatcher, JR.
  • Patent number: 7834225
    Abstract: A method and device is presented for separating liquid mixtures using ultrasonic atomization and without subjecting the mixture to heat or thermal distillation. The process of ultrasonic separation does not involve liquid heating and saves up to 75% of the energy required as compared to thermal distillation. The method involves high throughput fixed bed atomizers with a specially designed carrier gas flow for aerosolization, extraction, and transport of mist. The mist richer in the desired component is then collected and condensed by electrostatic or other de-misting means. Repeated processes can achieve high separation efficiency. The efficiency of separation can be controlled by varying the ultrasonic frequency, power, and number of arrays, liquid surface tension and interfacial tension of mixtures.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: November 16, 2010
    Assignee: Nanomist Systems, LLC
    Inventors: Kayyani C. Adiga, Rajani Adiga
  • Publication number: 20100218959
    Abstract: A method and device for suppression of fires related to heating appliances, vent hoods and work benches through deployment of very fine mist droplets, preferably less 100 micron diameter, into the firebase. A low momentum, high mist loading fine mist stream is introduced about the firebase. Mist is discharged to the firebase through diffusers or swirl channels so that the mist surrounding the firebase will be entrained into the firebase to secure and suppress the fire. After the fire is suppressed, the fine mist is further discharged to the hot oil surface for cooling.
    Type: Application
    Filed: August 25, 2009
    Publication date: September 2, 2010
    Applicant: Nanomist Systems, LLC
    Inventors: Kayyani C. Adiga, Rajani Adiga, Robert F. Hatcher
  • Patent number: 7744786
    Abstract: A method and device for manufacturing extremely fine particles and porous materials by controlled low temperature drying. An ambient-pressure and ambient-temperature atomizer atomizes a particle precursor solution to create a precursor mist. The precursor mist and dryer gas are fed into a dryer tube through a tangential inlet (swirl generating inlet). The mixed stream forms a helical flow structure within the dryer tube. The swirling mist undergoes drying and particle formation at a relatively low temperature. The flow continues to swirl and drying process continues with repeated passes until the required drying duration is reached. This dryer structure allows for a compact dryer with full control of residence time.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: June 29, 2010
    Assignee: Nanomist Systems, LLC
    Inventor: Kayyani C. Adiga
  • Publication number: 20090186757
    Abstract: A method and device for manufacturing extremely fine particles and porous materials by controlled low temperature drying. An ambient-pressure and ambient-temperature atomizer atomizes a particle precursor solution to create a precursor mist. The precursor mist and dryer gas are fed into a dryer tube through a tangential inlet (swirl generating inlet). The mixed stream forms a helical flow structure within the dryer tube. The swirling mist undergoes drying and particle formation at a relatively low temperature. The flow continues to swirl and drying process continues with repeated passes until the required drying duration is reached. This dryer structure allows for a compact dryer with full control of residence time.
    Type: Application
    Filed: April 1, 2009
    Publication date: July 23, 2009
    Applicant: NANOMIST SYSTEMS, LLC
    Inventor: Kayyani C. Adiga
  • Patent number: 7524442
    Abstract: A method and device for manufacturing extremely fine particles and porous materials by controlled low temperature drying. An ambient-pressure and ambient-temperature atomizer atomizes a particle precursor solution to create a precursor mist. The precursor mist and dryer gas are fed into a dryer tube through a tangential inlet (swirl generating inlet). The mixed stream forms a helical flow structure within the dryer tube. The swirling mist undergoes drying and particle formation at a relatively low temperature. The flow continues to swirl and drying process continues with repeated passes until the required drying duration is reached. This dryer structure allows for a compact dryer with full control of residence time.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: April 28, 2009
    Assignee: Nanomist Systems, LLC
    Inventor: Kayyani C. Adiga
  • Publication number: 20090044421
    Abstract: A method and device for manufacturing extremely fine particles and porous materials by controlled low temperature drying. An ambient-pressure and ambient-temperature atomizer atomizes a particle precursor solution to create a precursor mist. The precursor mist and dryer gas are fed into a dryer tube through a tangential inlet (swirl generating inlet). The mixed stream forms a helical flow structure within the dryer tube. The swirling mist undergoes drying and particle formation at a relatively low temperature. The flow continues to swirl and drying process continues with repeated passes until the required drying duration is reached. This dryer structure allows for a compact dryer with full control of residence time.
    Type: Application
    Filed: January 10, 2006
    Publication date: February 19, 2009
    Inventor: Kayyani C. Adiga
  • Publication number: 20090044887
    Abstract: Propellants and high energy materials compositions containing nano-sized oxidizer and other components. The propellant composition simulates a monopropellant formed by nano-sized propellant ingredients in the form of nano-scale reactors. When forming such monopropellant-like compositions, a protective coating is provided around the reactive ingredient. Coating the metal particles prevents formation of an oxidation layer.
    Type: Application
    Filed: January 11, 2006
    Publication date: February 19, 2009
    Inventor: Kayyani C. Adiga
  • Patent number: 7488171
    Abstract: A micro gas burner is provided that generates a stable, pre-mixed flame that produces little to no soot or unburned hydrocarbons. The gas burner includes a fuel inlet, nozzle, oxygenation chamber with at least one air inlet, a mixing chamber having a frustoconical inner wall, at least one permeable barrier and a flame holder. The gas burner thoroughly mixes fuel and entrained air to form a nearly stoichiometric mixture prior to combustion. The gas burner mixes the fuel and air so thoroughly that it requires a lower fuel flow rate than would otherwise be necessary to produce a stable, pre-mixed flame. The gas burner may include an optional flame tube with an optional exhaust port in which a flame is contained and sequestered from diffusing air.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: February 10, 2009
    Assignee: R.J. Reynolds Tobacco Company
    Inventors: Frank Kelley St. Charles, Kayyani C. Adiga
  • Patent number: 7326382
    Abstract: A method of sterilizing a site or contained volume includes providing an aqueous biocide solution containing a biocide agent such as hydrogen peroxide. A mist of reactive biocide droplets is generated by atomization at ambient pressure from the biocide solution and a flow of carrier medium or air is provided in communication with the mist. The flow of carrier medium is controlled to generate a biocide mist comprising a concentration of stable mist droplets within the carrier medium. By controlling aersolization, extraction and delivery of the stable mist droplets, a sufficient portion of the stable mist droplets for a sterilizing treatment of a designated site do not coalesce prior to treatment interaction with the treatment site. The process of formation, stabilization and extraction are done in-situ so that droplets do not coalesce during transport.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: February 5, 2008
    Assignee: Nanomist Systems, LLC
    Inventors: Kayyani C. Adiga, Rajani Adiga
  • Patent number: 7264773
    Abstract: The invention provides a method for generating a homogeneous aqueous mist solution containing a solvent such as water and a biocide agent such as chlorine dioxide, which would otherwise be unstable. The unstable biocide agent or chlorine dioxide is quickly dissolved or mixed with a mist of solvent causing the biocide agent to co-exist or co-mist therewith. The mist microencapsulates the biocide gas so that it does not decompose in the fumigation volume or space. The resulting homogenous mist solution provides a mist for delivering the biocide agent in a chemically stable form. Methods for mixing the separately generated mist and biocide gas include combining the mists in a Y-tube and then mixing the combination in a baffled mixing chamber, combining the mists in an area above their points of generation and then further mixing, and providing a series of mist generation units connected by a conduit for a carrier medium to pass to and connect the units and cause the mists to combine.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: September 4, 2007
    Assignee: Nanomist Systems, LLC
    Inventors: Kayyani C. Adiga, Rajani Adiga
  • Patent number: 7231923
    Abstract: A smoking article includes a tobacco rod in axial alignment with a filter section with a catalyst bed disposed between the tobacco rod and the filter section. The catalyst bed may be heated from an external portable heating source or may be heated by the internal evolving gases of combustion of the tobacco.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: June 19, 2007
    Assignee: R.J. Reynolds Tobacco Company
    Inventors: Kayyani C. Adiga, Rufus H. Honeycutt