Patents by Inventor Kazuaki Nishino

Kazuaki Nishino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10633729
    Abstract: Provided is austenitic heat-resisting cast steel that is excellent in both of the heat resistance and the machinability. Austenitic heat-resisting cast steel, includes: C: 0.1 to 0.4 mass %; Si: 0.8 to 2.5 mass %; Mn: 0.8 to 2.0 mass %; S: 0.05 to 0.30 mass %; Ni: 5 to 20 mass %; N: 0.3 mass % or less; Zr: 0.01 to 0.20 mass %; Ce: 0.01 to 0.10 mass %; one type or more of the elements selected from the following groups of (i) to (iii), at least including (i), (i) Cr: 14 to 24 mass %, (ii) Nb: 1.5 mass % or less, and (iii) Mo: 3.0 mass % or less; and Fe and inevitable impurity as a remainder.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: April 28, 2020
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Takamichi Ueda, Harumi Ueno, Takumi Hijii, Hitomi Hirai, Takashi Maeshima, Kazuaki Nishino, Hirofumi Ito
  • Publication number: 20180155809
    Abstract: Provided is austenitic: heat-resisting cast steel that is excellent in both of the heat resistance and the machinability. Austenitic heat-resisting cast steel, includes: C: 0.1 to 0.4 mass %; Si: 0.8 to 2.5 mass %, Mn: 0.8 to 2.0 mass %: S: 0.05 to 0.30 mass %, Ni: 5 to 20 mass %; N: 0.3 mass % or less; Zr: 0.01 to 0.20 mass %; Ce: 0.01 to 0.10 mass %; one type or more of the elements selected from the following groups of (i) to (iii), at least including (i), (i) Cr: 14 to 24 mass %, (ii) Nb: 1.5 mass % or less, and Mo: 3.0 mass % or less; and Fe and inevitable impurity as a remainder.
    Type: Application
    Filed: June 2, 2016
    Publication date: June 7, 2018
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Takamichi UEDA, Harumi UENO, Takumi HIJII, Hitomi HIRAI, Takashi MAESHIMA, Kazuaki NISHINO, Hirofumi ITO
  • Patent number: 9745650
    Abstract: Provided is austenite heat-resisting cast steel with reduced precipitation of ferrite phase during the application of thermal load to stabilize the austenite structure for improved heat resistance. The austenite heat-resisting cast steel contains elements of 0.1 to 0.6 mass % of C, 1.0 to 2.5 mass % of Si, 1.0 to 3.5 mass % of Mn, 0.05 to 0.2 mass % of S, 14 to 24 mass % of Cr, 5 to 20 mass % of Ni, 0.1 to 0.3 mass % of N, 0.01 to 1.2 mass % of Zr, 0.01 to 1.5 mass % of Cu, 0.01 to 1.5 mass % of Nb, Fe as a remainder and unavoidable impurity. The elements satisfy the following expressions: Mn—S?1.0; and C?(1/12Cr?32Zr)>0, where symbols for elements in these expressions represent values indicating content of the elements corresponding to the symbols in a unit of atomic %.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: August 29, 2017
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Takamichi Ueda, Harumi Ueno, Takashi Maeshima, Hirofumi Ito, Kazuaki Nishino, Hideaki Ikehata
  • Publication number: 20150225823
    Abstract: Provided is austenite heat-resisting cast steel with reduced precipitation of ferrite phase during the application of thermal load to stabilize the austenite structure for improved heat resistance. The austenite heat-resisting cast steel contains elements of 0.1 to 0.6 mass % of C, 1.0 to 2.5 mass % of Si, 1.0 to 3.5 mass % of Mn, 0.05 to 0.2 mass % of S, 14 to 24 mass % of Cr, 5 to 20 mass % of Ni, 0.1 to 0.3 mass % of N, 0.01 to 1.2 mass % of Zr, 0.01 to 1.5 mass % of Cu, 0.01 to 1.5 mass % of Nb, Fe as a remainder and unavoidable impurity. The elements satisfy the following expressions: Mn—S?1.0; and C?(1/12Cr?32Zr)>0, where symbols for elements in these expressions represent values indicating content of the elements corresponding to the symbols in a unit of atomic %.
    Type: Application
    Filed: January 22, 2015
    Publication date: August 13, 2015
    Applicants: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takamichi UEDA, Harumi UENO, Takashi MAESHIMA, Hirofumi ITO, Kazuaki NISHINO, Hideaki IKEHATA
  • Publication number: 20130327491
    Abstract: A piston for in-cylinder fuel-injection type internal combustion engine includes a piston body, a low thermal conductor, and a piston head. The low thermal conductor is disposed on the top of the piston body. The low thermal conductor includes a low thermally-conductive substrate, and a coating layer. The low thermally-conductive substrate has opposite surfaces. The coating layer includes alumina fine particles (Al2O3). The coating layer is adhered on at least a part one of the opposite surfaces of the low thermally-conductive substrate that makes a cast-buried or enveloped surface to be cast buried or enveloped in the piston head.
    Type: Application
    Filed: August 14, 2013
    Publication date: December 12, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masashi HARA, Kazuhiko ITOH, Mikio KONDOH, Kazuaki NISHINO, Isamu UEDA, Kimihiko ANDO, Yoshihiko ITO
  • Patent number: 8241530
    Abstract: There is provided an electron conductive and corrosion-resistant material 3 containing titanium (Ti), boron (B) and nitrogen (N) in an atomic ratio satisfying 0.05?[Ti]?0.40, 0.20?[B]?0.40, and 0.35?[N]?0.55 (provided that [Ti]+[B]+[N]=1). Further, there is provided a method of manufacturing an electron conductive and corrosion-resistant material 3, wherein boron nitride powder adheres to the surface of a substrate 2 of which at least the surface is made of titanium or a titanium alloy, and is then heated. Furthermore, there is provided a method of manufacturing an electron conductive and corrosion-resistant material 3, wherein the surface of a substrate 2 of which at least the surface is made of titanium or a titanium alloy is borided and then heated. In addition, there is provided a method of manufacturing an electron conductive and corrosion-resistant material 3, wherein a TiB2 layer formed of TiB2 particles is formed by spraying TiB2 powder onto a metal substrate 2 and then nitriding the TiB2 layer.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: August 14, 2012
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Toshio Horie, Gaku Kitahara, Nobuaki Suzuki, Hiroyuki Mori, Ken-ichi Suzuki, Isamu Ueda, Kazuaki Nishino
  • Publication number: 20090260594
    Abstract: A piston for in-cylinder fuel-injection type internal combustion engine includes a piston body, a low thermal conductor, and a piston head. The low thermal conductor is disposed on the top of the piston body. The low thermal conductor includes a low thermally-conductive substrate, and a coating layer. The low thermally-conductive substrate has opposite surfaces. The coating layer includes alumina fine particles (Al2O3). The coating layer is adhered on at least a part one of the opposite surfaces of the low thermally-conductive substrate that makes a cast-buried or enveloped surface to be cast buried or enveloped in the piston head.
    Type: Application
    Filed: April 16, 2009
    Publication date: October 22, 2009
    Inventors: Masashi HARA, Kazuhiko Itoh, Mikio Kondoh, Kazuaki Nishino, Isamu Ueda, Kimihiko Ando, Yoshihiko Ito
  • Publication number: 20090202736
    Abstract: There is provided an electron conductive and corrosion-resistant material 3 containing titanium (Ti), boron (B) and nitrogen (N) in an atomic ratio satisfying 0.05?[Ti]?0.40, 0.20?[B]?0.40, and 0.35?[N]?0.55 (provided that [Ti]+[B]+[N]=1). Further, there is provided a method of manufacturing an electron conductive and corrosion-resistant material 3, wherein boron nitride powder adheres to the surface of a substrate 2 of which at least the surface is made of titanium or a titanium alloy, and is then heated. Furthermore, there is provided a method of manufacturing an electron conductive and corrosion-resistant material 3, wherein the surface of a substrate 2 of which at least the surface is made of titanium or a titanium alloy is borided and then heated. In addition, there is provided a method of manufacturing an electron conductive and corrosion-resistant material 3, wherein a TiB2 layer formed of TiB2 particles is formed by spraying TiB2 powder onto a metal substrate 2 and then nitriding the TiB2 layer.
    Type: Application
    Filed: May 18, 2007
    Publication date: August 13, 2009
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Toshio Horie, Gaku Kitahara, Nobuaki Suzuki, Hiroyuki Mori, Ken-ichi Suzuki, Isamu Ueda, Kazuaki Nishino
  • Patent number: 7442266
    Abstract: A high-strength titanium alloy of the present invention includes Ti as a major component, 15 to 30 at % Va group element, and 1.5 to 7 at % oxygen (O) when the entirety is taken as 100 atomic % (at %), and its tensile strength is 1,000 MPa or more. Overturning the conventional concept, regardless of being high oxygen contents, it has been possible to achieve the compatibility between the high strength and high ductility on a higher level.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: October 28, 2008
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Tadahiko Furuta, Kazuaki Nishino, Takashi Saito, JungHwan Hwang
  • Patent number: 7438849
    Abstract: A titanium alloy includes at least one alloying element whose molybdenum equivalent “Moeq” is from 3 to 11% by mass, at least one interstitial solution element selected from the group consisting of O, N and C in an amount of from 0.3 to 3% by mass, and the balance of Ti, when the entirety is taken as 100% by mass. Its content of Al is controlled to 1.8% by mass or less, and it is ? single phase at room temperature at least.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: October 21, 2008
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Shigeru Kuramoto, Tadahiko Furuta, Junghwan Hwang, Rong Chen, Nobuaki Suzuki, Kazuaki Nishino, Takashi Saito
  • Patent number: 7261782
    Abstract: A titanium alloy obtained by a cold-working step, in which 10% or more of cold working is applied to a raw titanium alloy, comprising a Va group element and the balance of titanium substantially, and an aging treatment step, in which a cold-worked member, obtained after the cold-working step, is subjected to an aging treatment so that the parameter “P” falls in a range of from 8.0 to 18.5 at a treatment temperature falling in a range of from 150° C. to 600° C.; and characterized in that its tensile elastic limit strength is 950 MPa or more and its elastic deformation capability is 1.6% or more. This titanium alloy is of high elastic deformation capability as well as high tensile elastic limit strength, and can be utilized in a variety of products extensively.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: August 28, 2007
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: JungHwan Hwang, Tadahiko Furuta, Kazuaki Nishino, Takashi Saito
  • Patent number: 6979375
    Abstract: A titanium alloy member is characterized in that it comprise 40% by weight or more titanium (Ti), a IVa group element and/or a Va group element other than the titanium, wherein a summed amount including the IVa group element and/or the Va group element as well as the titanium is 90% by weight or more, and one or more members made in an amount of from 0.2 to 2.0% by weight and selected from an interstitial element group consisting of oxygen, nitrogen and carbon, and that its basic structure is a body-centered tetragonal crystal or a body-centered cubic crystal in which a ratio (c/a) of a distance between atoms on the c-axis with respect to a distance between atoms on the a-axis falls in a range of from 0.9 to 1.1. This titanium alloy member has such working properties that conventional titanium alloys do not have, is flexible, exhibits a high strength, and can be utilized in a variety of products.
    Type: Grant
    Filed: May 1, 2001
    Date of Patent: December 27, 2005
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Tadahiko Furuta, Yoshiki Seno, JungHwan Hwang, Kazuaki Nishino, Takashi Saito
  • Publication number: 20050072496
    Abstract: A titanium alloy obtained by a cold-working step, in which 10% or more of cold working is applied to a raw titanium alloy, comprising a Va group element and the balance of titanium substantially, and an aging treatment step, in which a cold-worked member, obtained after the cold-working step, is subjected to an aging treatment so that the parameter “P” falls in a range of from 8.0 to 18.5 at a treatment temperature falling in a range of from 150° C. to 600° C.; and characterized in that its tensile elastic limit strength is 950 MPa or more and its elastic deformation capability is 1.6% or more. This titanium alloy is of high elastic deformation capability as well as high tensile elastic limit strength, and can be utilized in a variety of products extensively.
    Type: Application
    Filed: December 5, 2001
    Publication date: April 7, 2005
    Inventors: JungHwan Hwang, Tadahiko Furuta, Kazuaki Nishino, Takashi Saito
  • Publication number: 20040115083
    Abstract: A high-strength titanium alloy of the present invention includes Ti as a major component, 15 to 30 at % Va group element, and 1.5 to 7 at % oxygen (O) when the entirety is taken as 100 atomic % (at %), and its tensile strength is 1,000 MPa or more.
    Type: Application
    Filed: September 26, 2003
    Publication date: June 17, 2004
    Inventors: Tadahiko Furuta, Kazuaki Nishino, Takashi Saito, JungHwan Hwang
  • Publication number: 20040055675
    Abstract: A titanium alloy includes at least one alloying element whose molybdenum equivalent “Moeq” is from 3 to 11% by mass, at least one interstitial solution element selected from the group consisting of O, N and C in an amount of from 0.3 to 3% by mass, and the balance of Ti, when the entirety is taken as 100% by mass. Its content of Al is controlled to 1.8% by mass or less, and it is &bgr; single phase at room temperature at least.
    Type: Application
    Filed: September 17, 2003
    Publication date: March 25, 2004
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Shigeru Kuramoto, Tadahiko Furuta, Junghwan Hwang, Rong Chen, Nobuaki Suzuki, Kazuaki Nishino, Takashi Saito
  • Patent number: 6607693
    Abstract: A titanium alloy according to the present invention is characterized in that it comprises an element of Va group (the vanadium group) in an amount of 30-60% by weight and the balance of titanium substantially, exhibits an average Young's modulus of 75 GPa or less, and exhibits a tensile elastic limit strength of 700 MPa or more. This titanium alloy can be used in a variety of products, which are required to exhibit a low Young's modulus, a high elastic deformability and a high strength, in a variety of fields.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: August 19, 2003
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Takashi Saito, Tadahiko Furuta, Kazuaki Nishino, Hiroyuki Takamiya
  • Publication number: 20030102062
    Abstract: A titanium alloy member is characterized in that it comprises 40% by weight or more titanium (Ti), a IVa group element and/or a Va group element other than the titanium, wherein a summed amount including the IVa group element and/or the Va group element as well as the titanium is 90% by weight or more, and one or more members made in an amount of from 0.2 to 2.0% by weight and selected from an interstitial element group consisting of oxygen, nitrogen and carbon, and that its basic structure is a body-centered tetragonal crystal or a body-centered cubic crystal in which a ratio (c/a) of a distance between atoms on the c-axis with respect to a distance between atoms on the a-axis falls in a range of from 0.9 to 1.1.
    Type: Application
    Filed: January 2, 2002
    Publication date: June 5, 2003
    Inventors: Tadahiko Furuta, Yoshiki Seno, JungHwan Hwang, Kazuaki Nishino, Takashi Saito
  • Patent number: 6410154
    Abstract: The invention relates to TiAl-base alloys with excellent oxidation resistance, and a method for producing the same. The TiAl-base alloy of the invention comprises a substrate and a surface part formed on the substrate, the surface part comprising at least one element of Cr, Nb, Ta and W and having a surface condition capable of forming a dense film of an oxide of the element or Al2O3 in high-temperature oxidizing atmospheres. The method of the invention comprises heating a TiAl-base alloy material having an Al content of from 15 at. % to 55 at. % in the presence of an oxide having a smaller negative value of standard free energy of formation than that of alumina. The method of the invention provides TiAl-base alloys with excellent oxidation resistance.
    Type: Grant
    Filed: November 28, 1997
    Date of Patent: June 25, 2002
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Hiroyuki Kawaura, Kazuaki Nishino, Takashi Saito
  • Publication number: 20020009383
    Abstract: The invention relates to TiAl-base alloys with excellent oxidation resistance, and a method for producing the same. The TiAl-base alloy of the invention comprises a substrate and a surface part formed on the substrate, the surface part comprising at least one element of Cr, Nb, Ta and W and having a surface condition capable of forming a dense film of an oxide of the element or Al2O3 in high-temperature oxidizing atmospheres. The method of the invention comprises heating a TiAl-base alloy material having an Al content of from 15 at. % to 55 at. % in the presence of an oxide having a smaller negative value of standard free energy of formation than that of alumina. The method of the invention provides TiAl-base alloys with excellent oxidation resistance. The TiAl-base alloys of the invention have significantly improved oxidation resistance and are resistant to heat at high temperatures of 900° C. or higher.
    Type: Application
    Filed: November 28, 1997
    Publication date: January 24, 2002
    Inventors: HIROYUKI KAWAURA, KAZUAKI NISHINO, TAKASHI SAITO
  • Patent number: 6309699
    Abstract: The invention provides a method of producing an oxidation-resistant metallic part which exhibits oxidation resistance even in an oxidation atmosphere. The method includes the step of applying mechanical energy to a surface of a metallic part in the presence of particulates, and forming a protective coating in a surface of the metallic part. When the metallic part thus treated is exposed in a high temperature-oxidation atmosphere, the protective coating is oxidized to restrain the proceeding of the oxidation of the metallic part, that is the internally proceeding formation of TiO2, thus serving a remarkable improvement of the oxidation resistance.
    Type: Grant
    Filed: February 22, 1999
    Date of Patent: October 30, 2001
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Hiroyuki Kawaura, Hiroshi Kawahara, Takashi Saito, Kazuaki Nishino, Nobuhiko Matsumoto, Tadahiko Furuta