Patents by Inventor Kazuo Nishi

Kazuo Nishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10703116
    Abstract: A recording apparatus includes a medium storage cassette which includes a medium storage region and is capable of being inserted and removed with respect to an apparatus main body, in which the medium storage cassette includes a main cassette unit and a sub-cassette unit which is capable of switching between a first state and a second state which is displaced more in the removal direction than in the first state to expand the medium storage region, and in which the apparatus main body includes a cover which is provided to be capable of being displaced between a position corresponding to the first state of the sub-cassette unit and a position corresponding to the second state and which covers a top portion of the medium storage region on the removal direction side.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: July 7, 2020
    Assignee: Seiko Epson Corporation
    Inventors: Kazuo Otsuka, Satoshi Nakata, Katsumi Yamada, Manato Nishi, Kenichi Furuya
  • Publication number: 20200176983
    Abstract: A control device of a power supply system includes a first processing unit and a second processing unit. The first processing unit is a processing unit configured to perform a first process of determining certain strings out of a plurality of strings connected in parallel to a power distribution device. The second processing unit is a processing unit configured to perform a second process of performing inputting of electric power to the plurality of strings connected in parallel to the power distribution device or outputting of electric power from the plurality of strings to the power distribution device using at least the certain strings determined by the first processing unit.
    Type: Application
    Filed: November 22, 2019
    Publication date: June 4, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta IZUMI, Kenji KIMURA, Toshihiro KATSUDA, Kohei MATSUURA, Junichi MATSUMOTO, Shuji TOMURA, Shigeaki GOTO, Naoki YANAGIZAWA, Kyosuke TANEMURA, Kazuo OOTSUKA, Takayuki BAN, Hironobu NISHI
  • Publication number: 20200177018
    Abstract: A control device of a power supply system is configured to control inputting of electric power from a power system connected to a power distribution device to a plurality of strings connected to the power distribution device and outputting of electric power from the plurality of strings to the power system and to execute a process of stopping control for switching the at least one switching element between connection and disconnection on a string in which inputting of electric power and outputting of electric power are stopped out of the plurality of strings.
    Type: Application
    Filed: November 13, 2019
    Publication date: June 4, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta IZUMI, Kenji KIMURA, Toshihiro KATSUDA, Kohei MATSUURA, Junichi MATSUMOTO, Shuji TOMURA, Shigeaki GOTO, Naoki YANAGIZAWA, Kyosuke TANEMURA, Kazuo OOTSUKA, Takayuki BAN, Hironobu NISHI
  • Publication number: 20200177019
    Abstract: A power supply system disclosed here is connected to an electric power system through a distribution device. The power supply system includes a plurality of strings connected to the distribution device and a failure detector. The failure detector of the power supply system is configured to perform a first process of connecting at least one battery module to a main line to set a voltage detected by a string voltage detector at a voltage higher than a predetermined voltage in a state where a switch disconnects the distribution device and the main line, a second process of sending a disconnecting signal for disconnecting all the sweep modules from the main line, and a third process of determining whether the voltage detected by the string voltage detector is lower than the predetermined determination voltage or not after the second process.
    Type: Application
    Filed: November 18, 2019
    Publication date: June 4, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta IZUMI, Kenji KIMURA, Toshihiro KATSUDA, Kohei MATSUURA, Junichi MATSUMOTO, Shuji TOMURA, Shigeaki GOTO, Naoki YANAGIZAWA, Kyosuke TANEMURA, Kazuo OOTSUKA, Takayuki BAN, Hironobu NISHI
  • Publication number: 20200176982
    Abstract: A control device of a power supply system includes a stopping process unit. The stopping process unit is configured to operate a switching element when connection between a power system and a main line is cut off by a system breaker and to perform a stopping process of sequentially switching battery modules which are connected to the main line such that the number of battery modules which are connected to the main line decreases gradually.
    Type: Application
    Filed: November 21, 2019
    Publication date: June 4, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta Izumi, Kenji Kimura, Toshihiro Katsuda, Kohei Matsuura, Junichi Matsumoto, Shuji Tomura, Shigeaki Goto, Naoki Yanagizawa, Kyosuke Tanemura, Kazuo Ootsuka, Takayuki Ban, Hironobu Nishi
  • Publication number: 20200177178
    Abstract: A power supply system includes a plurality of sweep modules that is connected to a main line. Each sweep module includes a switching element that switches between connection and disconnection between a battery module and the main line and is formed of a MOSFET. A failure detecting device of the power supply system includes a temperature detecting unit configured to detect temperatures of the plurality of sweep modules and a failure determining unit configured to determine whether a difference between a temperature of one sweep module selected from the plurality of sweep modules and a reference temperature which is determined based on the temperatures of other sweep modules is greater than a predetermined threshold value.
    Type: Application
    Filed: November 15, 2019
    Publication date: June 4, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta IZUMI, Kenji KIMURA, Toshihiro KATSUDA, Kohei MATSUURA, Junichi MATSUMOTO, Shuji TOMURA, Shigeaki GOTO, Naoki YANAGIZAWA, Kyosuke TANEMURA, Kazuo OOTSUKA, Takayuki BAN, Hironobu NISHI
  • Publication number: 20200166576
    Abstract: A power supply system includes a plurality of sweep modules, a defect detecting unit, and a control unit. Each sweep module includes a battery module and a power circuit module. The defect detecting unit detects a defect for each sweep module. The number of sweep modules is greater S (S?2) than a minimum number of sweep modules required for operation. When the number of defective sweep modules in which a defect has been detected is equal to or less than F (2?F?S), the control unit is configured to disconnect the defective sweep modules from a main line and to continuously execute sweep control.
    Type: Application
    Filed: November 15, 2019
    Publication date: May 28, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta IZUMI, Kenji KIMURA, Toshihiro KATSUDA, Kohei MATSUURA, Junichi MATSUMOTO, Shuji TOMURA, Shigeaki GOTO, Naoki YANAGIZAWA, Kyosuke TANEMURA, Kazuo OOTSUKA, Takayuki BAN, Hironobu NISHI
  • Publication number: 20200169080
    Abstract: The present teaching provides a power supply system capable of fully utilizing a plurality of batteries having different performances. A power supply system disclosed here includes a main line, a plurality of sweep modules, and a controller. Each of the sweep modules includes a battery module and an electric power circuit module. The electric power circuit module includes a switching device for connecting a connection state between the battery modules and the main line between connection and disconnection. The controller performs sweep control of sequentially switching the battery module connected to the main line among the plurality of battery modules. During an input of electric power from outside, the controller disconnects the battery module whose SOC level satisfies a high SOC condition from the main line (S7), and continues sweep control (S8, S9).
    Type: Application
    Filed: November 18, 2019
    Publication date: May 28, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta IZUMI, Kenji KIMURA, Toshihiro KATSUDA, Kohei MATSUURA, Junichi MATSUMOTO, Shuji TOMURA, Shigeaki GOTO, Naoki YANAGIZAWA, Kyosuke TANEMURA, Kazuo OOTSUKA, Takayuki BAN, Hironobu NISHI
  • Publication number: 20200169082
    Abstract: A power supply system includes a main line, a plurality of sweep modules, and a control unit. Each sweep module includes a battery module and a power circuit module. The power circuit module switches between connection and disconnection between the battery module and the main line. The control unit executes sweep control for sequentially switching the battery modules which are to be connected to the main line. The control unit maintains connection of a refreshing module which is to be subjected to refreshing charging/discharging to the main line while sweep control is being executed in a state in which the refreshing module is excluded in at least one of outputting of electric power to the outside and inputting of electric power from the outside.
    Type: Application
    Filed: November 13, 2019
    Publication date: May 28, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta IZUMI, Kenji KIMURA, Toshihiro KATSUDA, Kohei MATSUURA, Junichi MATSUMOTO, Shuji TOMURA, Shigeaki GOTO, Naoki YANAGIZAWA, Kyosuke TANEMURA, Kazuo OOTSUKA, Takayuki BAN, Hironobu NISHI
  • Publication number: 20200169115
    Abstract: The present teaching provides a power supply system capable of appropriately performing replacement or repairing of a component of a module where a problem occurs without stopping the entire operation, in a case where the problem occurs in of the module in a plurality of modules. The power supply system includes a plurality of sweep modules, a problem detector, an indicator, and a controller. Each sweep module includes a battery module and an electric power circuit module. The problem detector detects a problem for each sweep module. The indicator indicates a sweep module in which a problem is detected. In a case where a problem is detected in the sweep module (S4: YES), the controller causes the indicator to indicate a failure sweep module in which the problem is detected (S5). The controller disconnects the failure sweep module from a main line, and continues sweep control (SG through S8).
    Type: Application
    Filed: November 18, 2019
    Publication date: May 28, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta IZUMI, Kenji KIMURA, Toshihiro KATSUDA, Kohei MATSUURA, Junichi MATSUMOTO, Shuji TOMURA, Shigeaki GOTO, Naoki YANAGIZAWA, Kyosuke TANEMURA, Kazuo OOTSUKA, Takayuki BAN, Hironobu NISHI
  • Publication number: 20200169081
    Abstract: A power supply system includes a plurality of sweep modules. Each sweep module includes a battery module, an input and output circuit, a switching element, a capacitor, and a line. The input and output circuit connects the battery module to a main line. The switching element switches between connection and disconnection between the battery module and the main line. The capacitor is attached in parallel to the battery module. The line connects the input and output circuit to the battery module. The line is maintained in a state in which a loop portion is formed.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 28, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta IZUMI, Kenji KIMURA, Toshihiro KATSUDA, Kohei MATSUURA, Junichi MATSUMOTO, Shuji TOMURA, Shigeaki GOTO, Naoki YANAGIZAWA, Kyosuke TANEMURA, Kazuo OOTSUKA, Takayuki BAN, Hironobu NISHI
  • Publication number: 20190384321
    Abstract: A work vehicle includes: an electronic control system for automatic driving; and a cabin with which a boarding space is formed. The electronic control system includes an antenna unit for satellite navigation, and the antenna unit is attached to a central area of a roof of the cabin in a left-right direction. An upper surface of an area of the roof around the antenna unit is formed so as to be an inclined surface that is inclined in a front-rear direction. Left and right end portions of the roof are provided with left and right bulging edge portions that bulge upward from the left and right end portions and have a length that spans between front and rear ends of the roof, and water drain grooves that guide water on the roof toward the left and right bulging edge portions such that water detours the antenna unit.
    Type: Application
    Filed: December 21, 2017
    Publication date: December 19, 2019
    Applicant: KUBOTA CORPORATION
    Inventors: Keishiro NISHI, Atsushi SHINKAI, Tomofumi FUKUNAGA, Takahiro NAKATSUKA, Yushi MATSUZAKI, Kazuo SAKAGUCHI, Takafumi MORISHITA
  • Patent number: 9859454
    Abstract: In a thin film photoelectric conversion device fabricated by addition of a catalyst element with the use of a solid phase growth method, defects such as a short circuit or leakage of current are suppressed. A catalyst material which promotes crystallization of silicon is selectively added to a second silicon semiconductor layer formed over a first silicon semiconductor layer having one conductivity type, the second silicon semiconductor layer is partly crystallized by a heat treatment, a third silicon semiconductor layer having a conductivity type opposite to the one conductivity type is stacked, and element isolation is performed at a region in the second silicon semiconductor layer to which a catalyst material is not added, so that a left catalyst material is prevented from being diffused again, and defects such as a short circuit or leakage of current are suppressed.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: January 2, 2018
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei Yamazaki, Kazuo Nishi
  • Patent number: 9772221
    Abstract: A photodetector of the invention is characterized by having a plurality of detector elements that are arranged over a light-transparent substrate and are connected in parallel. A foldable portable communication tool having two display portions of the invention is characterized by including one photodetector which includes a plurality of detector elements connected in parallel.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: September 26, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuo Nishi, Yu Yamazaki, Tomoyuki Iwabuchi, Keisuke Miyagawa
  • Patent number: 9496428
    Abstract: A stack including a first electrode, a first impurity semiconductor layer having one conductivity type, an intrinsic semiconductor layer, a second impurity semiconductor layer having an opposite conductivity type to the one conductivity type, and a light-transmitting second electrode is formed over an insulator. The light-transmitting second electrode and the second impurity semiconductor layer have one or more openings. The shortest distance between one portion of the wall of one opening and an opposite portion of the wall of the same opening at the level of the interface between the second impurity semiconductor layer and the intrinsic semiconductor layer is made smaller than the diffusion length of holes in the intrinsic semiconductor layer. Thus, recombination is suppressed, so that more photocarriers are generated due to the openings and taken out as current, whereby conversion efficiency is increased.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: November 15, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuo Nishi, Naoto Kusumoto
  • Patent number: 9413289
    Abstract: A photoelectric conversion device includes at least two photoelectric conversion elements which have voltage-current characteristics different from each other. Further, one of the photoelectric conversion elements has photoelectric conversion efficiency higher than that of the other photoelectric conversion element under the environment in which room light can be obtained. Furthermore, the other photoelectric conversion element has photoelectric conversion efficiency higher than the one of the photoelectric conversion elements under the environment in which sunlight can be obtained. Moreover, each of the voltage of electric power generated in the at least two photoelectric conversion elements is adjusted by one of at least two DC-DC converters corresponding the photoelectric conversion element. In addition, part of the electric power generated in the one of the photoelectric conversion elements is used as drive electric power of the at least two DC-DC converter.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: August 9, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshiaki Ito, Kazuo Nishi, Kei Takahashi
  • Patent number: 9214587
    Abstract: A photoelectric conversion module in which an output voltage defect is suppressed is obtained by forming in parallel over a substrate n number (n is a natural number) of integrated photoelectric conversion devices each including a plurality of cells that are connected in series, and electrically connecting in parallel n?1 number or less of integrated photoelectric conversion devices with normal electrical characteristics and excluding an integrated photoelectric conversion device with a characteristic defect such as a short-circuit between top and bottom electrodes or a leak current due to a structural defect or the like formed in a semiconductor layer or the like.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: December 15, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuo Nishi, Yasushi Maeda, Ryosuke Motoyoshi, Yuji Oda, Kei Takahashi, Yoshiaki Ito, Tatsuji Nishijima
  • Patent number: 9087950
    Abstract: A multi-junction photoelectric conversion device that can be manufactured by a simple method is provided. In addition, a photoelectric conversion device whose mechanical strength is increased without complicating a manufacturing process is provided. A photoelectric conversion device includes a first cell having a photoelectric conversion function, a second cell having a photoelectric conversion function, and a structure body including a fibrous body, which firmly attaches and electrically connects the first cell and the second cell to each other. Accordingly, a multi-junction photoelectric conversion device in which semiconductor junctions are connected in series and sufficient electrical connection between p-i-n junctions is ensured can be provided.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: July 21, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yukie Suzuki, Kazuo Nishi
  • Patent number: 9059347
    Abstract: A photoelectric conversion device having a high electric generating capacity at low illuminance, in which a semiconductor layer is appropriately separated and short circuit of a side surface portion of a cell is prevented. The photoelectric conversion device includes an isolation groove formed between one first electrode and the other first electrode that is adjacent to the one first electrode; a stack including a first semiconductor layer having one conductivity type over the first electrode, a second semiconductor layer formed using an intrinsic semiconductor, and a third semiconductor layer having a conductivity type opposite to the one conductivity type; and a connection electrode connecting one first electrode and a second electrode that is in contact with a third semiconductor layer included in a stack formed over the other first electrode that is adjacent to the one first electrode. A side surface portion of the second semiconductor layer is not crystallized.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: June 16, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kazuo Nishi, Takashi Hirose, Naoto Kusumoto
  • Publication number: 20140220730
    Abstract: In a thin film photoelectric conversion device fabricated by addition of a catalyst element with the use of a solid phase growth method, defects such as a short circuit or leakage of current are suppressed. A catalyst material which promotes crystallization of silicon is selectively added to a second silicon semiconductor layer formed over a first silicon semiconductor layer having one conductivity type, the second silicon semiconductor layer is partly crystallized by a heat treatment, a third silicon semiconductor layer having a conductivity type opposite to the one conductivity type is stacked, and element isolation is performed at a region in the second silicon semiconductor layer to which a catalyst material is not added, so that a left catalyst material is prevented from being diffused again, and defects such as a short circuit or leakage of current are suppressed.
    Type: Application
    Filed: April 14, 2014
    Publication date: August 7, 2014
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Kazuo NISHI