Patents by Inventor Kazushige Ueda

Kazushige Ueda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230340261
    Abstract: It is provided that a biaxially stretched polyamide film that has excellent resistance to pinhole formation due to bending, has excellent resistance to pinhole formation due to repeated contact, has excellent piercing resistance, and further can suppress generation of foreign matter during film formation. A biaxially stretched polyimide film comprising a functional layer (layer B) laminated on at least one surface of a base layer (layer A), wherein the base layer (layer A) contains at least (a) 70 to 99% by mass of a polyamide 6 resin, and (b) 1 to 20% by mass of an aliphatic or aromatic-aliphatic polyester resin, and the functional layer (layer B) contains at least 70% by mass or more of a polyamide 6 resin.
    Type: Application
    Filed: March 24, 2021
    Publication date: October 26, 2023
    Applicant: TOYOBO CO., LTD.
    Inventors: Kazushige UEDA, Takamichi GOTO, Takuro ENDO
  • Patent number: 8193704
    Abstract: There are provided a perovskite oxide thin film EL element in which a hole transport layer/a light-emitting layer/an electron transport layer comprising a perovskite oxide thin film are formed on a lower electrode, and an upper electrode is formed thereon, and a perovskite oxide thin film EL element that provides red light emission in the vicinity of a wavelength of 610 nm, which is the basis of display making. A perovskite oxide thin film EL element comprising a lower electrode 1 comprising a polished single crystal substrate, an electron transport layer 2 comprising a perovskite oxide thin film, which is a dielectric, formed on the lower electrode 1, a light-emitting layer 3 comprising a perovskite oxide thin film formed on the electron transport layer 2, a hole transport layer 4 comprising a perovskite oxide thin film, which is a dielectric, formed on the light-emitting layer 3, a buffer layer 5 formed on the hole transport layer 4, and a transparent upper electrode 6 formed on the buffer layer 5.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: June 5, 2012
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Hiroshi Takashima, Yoshiyuki Inaguma, Noboru Miura, Kazushige Ueda, Mitsuru Itoh
  • Publication number: 20110121722
    Abstract: There are provided a perovskite oxide thin film EL element in which a hole transport layer/a light-emitting layer/an electron transport layer comprising a perovskite oxide thin film are formed on a lower electrode, and an upper electrode is formed thereon, and a perovskite oxide thin film EL element that provides red light emission in the vicinity of a wavelength of 610 nm, which is the basis of display making. A perovskite oxide thin film EL element comprising a lower electrode 1 comprising a polished single crystal substrate, an electron transport layer 2 comprising a perovskite oxide thin film, which is a dielectric, formed on the lower electrode 1, a light-emitting layer 3 comprising a perovskite oxide thin film formed on the electron transport layer 2, a hole transport layer 4 comprising a perovskite oxide thin film, which is a dielectric, formed on the light-emitting layer 3, a buffer layer 5 formed on the hole transport layer 4, and a transparent upper electrode 6 formed on the buffer layer 5.
    Type: Application
    Filed: February 17, 2009
    Publication date: May 26, 2011
    Applicant: NAtional Institute of Advanced Industrial Science and Technology
    Inventors: Hiroshi Takashima, Yoshiyuki Inaguma, Noboru Miura, Kazushige Ueda, Mitsuru Itoh
  • Patent number: 7897068
    Abstract: A sputtering target is provided that has a relative density of 80% or more and contains a compound having as its principal component zinc oxide satisfying AXBYO(KaX+KbY)/2(ZnO)m, 1<m, X?m, 0<Y?0.9, X+Y=2, where A and B are respectively different positive elements of trivalence or more, and the valencies thereof are respectively Ka and Kb. A ZnO based sputtering target is obtained which does not contain ZnS and SiO2, and, upon forming a film via sputtering, is capable of reducing the affect of heating the substrate, of performing high speed deposition, of adjusting the film thickness to be thin, of reducing the generation of particles (dust) and nodules during sputtering, of improving the productivity with small variation in quality, and which has fine crystal grains and a high density of 80% or more, particularly 90% or more.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: March 1, 2011
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Hideo Hosono, Kazushige Ueda, Masataka Yahagi, Hideo Takami
  • Patent number: 7892457
    Abstract: A sputtering target is provided that has a relative density of 80% or more and contains a compound having as its principal component zinc oxide satisfying AXBYO(KaX+KbY)/2(ZnO)m, 1<m, X?m, 0<Y?0.9, X+Y=2, where A and B are respectively different positive elements of trivalence or more, and the valencies thereof are respectively Ka and Kb. A ZnO based sputtering target is obtained which does not contain ZnS and SiO2, and, upon forming a film via sputtering, is capable of reducing the affect of heating the substrate, of performing high speed deposition, of adjusting the film thickness to be thin, of reducing the generation of particles (dust) and nodules during sputtering, of improving the productivity with small variation in quality, and which has fine crystal grains and a high density of 80% or more, particularly 90% or more.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: February 22, 2011
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Hideo Hosono, Kazushige Ueda, Masataka Yahagi, Hideo Takami
  • Publication number: 20100240521
    Abstract: A sputtering target is provided that has a relative density of 80% or more and contains a compound having as its principal component zinc oxide satisfying AXBYO(KaX+KbY)/2(ZnO)m, 1<m, X<m, 0?Y?0.9, X+Y=2, where A and B are respectively different positive elements of trivalence or more, and the valencies thereof are respectively Ka and Kb. A ZnO based sputtering target is obtained which does not contain ZnS and SiO2, and, upon forming a film via sputtering, is capable of reducing the affect of heating the substrate, of performing high speed deposition, of adjusting the film thickness to be thin, of reducing the generation of particles (dust) and nodules during sputtering, of improving the productivity with small variation in quality, and which has fine crystal grains and a high density of 80% or more, particularly 90% or more.
    Type: Application
    Filed: June 4, 2010
    Publication date: September 23, 2010
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Hideo Hosono, Kazushige Ueda, Masataka Yahagi, Hideo Takami
  • Publication number: 20100167000
    Abstract: A sputtering target is provided that has a relative density of 80% or more and contains a compound having as its principal component zinc oxide satisfying AXBYO(KaX+KbY)/2(ZnO)m, 1<m, X?m, 0<Y?0.9, X+Y=2, where A and B are respectively different positive elements of trivalence or more, and the valencies thereof are respectively Ka and Kb. A ZnO based sputtering target is obtained which does not contain ZnS and SiO2, and, upon forming a film via sputtering, is capable of reducing the affect of heating the substrate, of performing high speed deposition, of adjusting the film thickness to be thin, of reducing the generation of particles (dust) and nodules during sputtering, of improving the productivity with small variation in quality, and which has fine crystal grains and a high density of 80% or more, particUlarly 90% or more.
    Type: Application
    Filed: March 11, 2010
    Publication date: July 1, 2010
    Applicant: Nippon Mining & Metals Co., Ltd.
    Inventors: Hideo Hosono, Kazushige Ueda, Masataka Yahagi, Hideo Takami
  • Patent number: 7718095
    Abstract: A sputtering target is provided that has a relative density of 80% or more and contains a compound having as its principal component zinc oxide satisfying AXBYO(KaX+KbY)/2(ZnO)m, 1<m, X?m, 0<Y?0.9, X+Y=2, where A and B are respectively different positive elements of trivalence or more, and the valencies thereof are respectively Ka and Kb. A ZnO based sputtering target is obtained which does not contain ZnS and SiO2, and, upon forming a film via sputtering, is capable of reducing the affect of heating the substrate, of performing high speed deposition, of adjusting the film thickness to be thin, of reducing the generation of particles (dust) and nodules during sputtering, of improving the productivity with small variation in quality, and which has fine crystal grains and a high density of 80% or more, particularly 90% or more.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: May 18, 2010
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Hideo Hosono, Kazushige Ueda, Masataka Yahagi, Hideo Takami
  • Patent number: 7635440
    Abstract: Provided is a sputtering target having a relative density of 80% or more and containing a compound having as its principal component zinc oxide satisfying AXBYO(KaX+KbY)/2(ZnO)m, 1<m, X?m, 0<Y?0.9, X+Y=2, where A and B are respectively different positive elements of trivalence or more, and the valencies thereof are respectively Ka and Kb. Obtained is a ZnO based sputtering target which does not contain ZnS and SiO2, and, upon forming a film via sputtering, is capable of reducing the affect of heating the substrate, of performing high speed deposition, of adjusting the film thickness to be thin, of reducing the generation of particles (dust) and nodules during sputtering, of improving the productivity with small variation in quality, and which has fine crystal grains and a high density of 80% or more, particularly 90% or more.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: December 22, 2009
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Hideo Hosono, Kazushige Ueda, Masataka Yahagi, Hideo Takami
  • Publication number: 20080299415
    Abstract: A sputtering target is provided that has a relative density of 80% or more and contains a compound having as its principal component zinc oxide satisfying AXBYO(KaX+KbY)/2(ZnO)m, 1<m, X?m, 0<Y?0.9, X+Y=2, where A and B are respectively different positive elements of trivalence or more, and the valencies thereof are respectively Ka and Kb. A ZnO based sputtering target is obtained which does not contain ZnS and SiO2, and, upon forming a film via sputtering, is capable of reducing the affect of heating the substrate, of performing high speed deposition, of adjusting the film thickness to be thin, of reducing the generation of particles (dust) and nodules during sputtering, of improving the productivity with small variation in quality, and which has fine crystal grains and a high density of 80% or more, particularly 90% or more.
    Type: Application
    Filed: July 24, 2008
    Publication date: December 4, 2008
    Applicant: Nippon Mining & Metals Co., Ltd.
    Inventors: Hideo Hosono, Kazushige Ueda, Masataka Yahagi, Hideo Takami
  • Patent number: 7344660
    Abstract: A manufacturing method of a sputtering target having mainly oxychalcogenide containing La and Cu by sintering at least one or more powders selected from an elementary substance of a constituent element, oxide or chalcogenide as the raw material, characterized in including a reaction step of retaining the [material] at a temperature of 850° C. or less for 1 hour or more during the sintering step, wherein this [material], after the reaction step, is subject to pressure sintering at a temperature that is higher than the reaction step temperature. In addition to increasing the density of a P-type transparent conductive material target having mainly oxychalcogenide containing La and Cu and enabling the enlargement of the target at a low manufacturing cost, the existence of unreacted matter in the target can be eliminated, the production yield can be improved by suppressing the generation of cracks in the target, and the quality of deposition formed by sputtering this kind of target can also be improved.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: March 18, 2008
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Hideo Hosono, Kazushige Ueda, Masataka Yahagi, Hideo Takami
  • Patent number: 7323356
    Abstract: Disclosed is a method of producing an LnCuOX single-crystal thin film (wherein Ln is at least one selected from the group consisting of lanthanide elements and yttrium, and X is at least one selected from the group consisting of S, Se and Te), which comprises the steps of growing a base thin film on a single-crystal substrate, depositing an amorphous or polycrystalline LnCuOX thin film on the base thin film to form a laminated film, and then annealing the laminated film at a high temperature of 500° C. or more.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: January 29, 2008
    Assignee: Japan Science and Technology Agency
    Inventors: Hideo Hosono, Masahiro Hirano, Hiromichi Ota, Masahiro Orita, Hidenori Hiramatsu, Kazushige Ueda
  • Publication number: 20060147740
    Abstract: Provided is a sputtering target having a relative density of 80% or more and containing a compound having as its principal component zinc oxide satisfying AXBYO(KaX+KbY)/2(ZnO)m, 1<m, X?m, 0<Y?0.9, X+Y=2, where A and B are respectively different positive elements of trivalence or more, and the valencies thereof are respectively Ka and Kb. Obtained is a ZnO based sputtering target which does not contain ZnS and SiO2, and, upon forming a film via sputtering, is capable of reducing the affect of heating the substrate, of performing high speed deposition, of adjusting the film thickness to be thin, of reducing the generation of particles (dust) and nodules during sputtering, of improving the productivity with small variation in quality, and which has fine crystal grains and a high density of 80% or more, particularly 90% or more.
    Type: Application
    Filed: February 3, 2004
    Publication date: July 6, 2006
    Applicant: Nikko Materials Co., Ltd.
    Inventors: Hideo Hosono, Kazushige Ueda, Masataka Yahagi, Hideo Takami
  • Patent number: 7061014
    Abstract: Disclosed is a natural-superlattice homologous single-crystal thin film, which includes a complex oxide which is epitaxially grown on either one of a ZnO epitaxial thin film formed on a single-crystal substrate, the single-crystal substrate after disappearance of the ZnO epitaxial thin film and a ZnO single crystal. The complex oxide is expressed by the formula: M1M2O3 (ZnO)m, wherein M1 is at least one selected from the group consisting of Ga, Fe, Sc, In, Lu, Yb, Tm, Er, Ho and Y, M2 is at least one selected from the group consisting of Mn, Fe, Ga, In and Al, and m is a natural number of 1 or more. A natural-superlattice homologous single-crystal thin film formed by depositing the complex oxide and subjecting the obtained layered film to a thermal anneal treatment can be used in optimal devices, electronic devices and X-ray optical devices.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: June 13, 2006
    Assignee: Japan Science and Technology Agency
    Inventors: Hideo Hosono, Hiromichi Ota, Masahiro Orita, Kazushige Ueda, Masahiro Hirano, Toshio Kamiya
  • Publication number: 20060099126
    Abstract: A manufacturing method of a sputtering target having mainly oxychalcogenide containing La and Cu by sintering at least one or more powders selected from an elementary substance of a constituent element, oxide or chalcogenide as the raw material, characterized in including a reaction step of retaining the [material] at a temperature of 850° C. or less for 1 hour or more during the sintering step, wherein this [material], after the reaction step, is subject to pressure sintering at a temperature that is higher than the reaction step temperature. In addition to increasing the density of a P-type transparent conductive material target having mainly oxychalcogenide containing La and Cu and enabling the enlargement of the target at a low manufacturing cost, the existence of unreacted matter in the target can be eliminated, the production yield can be improved by suppressing the generation of cracks in the target, and the quality of deposition formed by sputtering this kind of target can also be improved.
    Type: Application
    Filed: February 3, 2004
    Publication date: May 11, 2006
    Applicant: Nikko Materials Co., Ltd.
    Inventors: Hideo Hosono, Kazushige Ueda, Masataka Yahagi, Hideo Takami
  • Publication number: 20050158993
    Abstract: Disclosed is a method of producing an LnCuOX single-crystal thin film (wherein Ln is at least one selected from the group consisting of lanthanide elements and yttrium, and X is at least one selected from the group consisting of S, Se and Te), which comprises the steps of growing a base thin film on a single-crystal substrate, depositing an amorphous or polycrystalline LnCuOX thin film on the base thin film to form a laminated film, and then annealing the laminated film at a high temperature of 500° C. or more.
    Type: Application
    Filed: February 19, 2003
    Publication date: July 21, 2005
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hideo Hosono, Masahiro Hirano, Hiromichi Ota, Masahiro Orita, Hidenori Hiramatsu, Kazushige Ueda
  • Publication number: 20050039670
    Abstract: Disclosed is a natural-superlattice homologous single-crystal thin film, which comprises a complex oxide which is epitaxially grown on either one of a ZnO epitaxial thin film formed on a single-crystal substrate, the single-crystal substrate after disappearance of the ZnO epitaxial thin film and a ZnO single crystal. The complex oxide is expressed by the a formula: M1M2O3 (ZnO)m, wherein M1 is at least one selected from the group consisting of Ga, Fe, Sc, In, Lu, Yb, Tm, Er, Ho and Y, M2 is at least one selected from the group consisting of Mn, Fe, Ga, In and Al, and m is a natural number of 1 or more. A natural-superlattice homologous single-crystal thin film formed by depositing the complex oxide and subjecting the obtained layered film to a thermal anneal treatment can be used in optimal devices, electronic devices and X-ray optical devices.
    Type: Application
    Filed: October 31, 2002
    Publication date: February 24, 2005
    Inventors: Hideo Hosono, Hiromichi Ota, Masahiro Orita, Kazushige Ueda, Masahiro Hirano, Toshio Kamiya