Patents by Inventor Kazuya Okamoto

Kazuya Okamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10416250
    Abstract: In one embodiment, an MRI apparatus includes a wireless RF coil; a control side oscillator configured to output a control-side clock signal used for executing a pulse sequence; and a synchronization signal transmission circuit configured to wirelessly transmit a synchronization signal to the wireless RF coil in an executing period of the pulse sequence, except an MR-signal detection period during which the wireless RF coil detects a magnetic resonance signal, wherein the synchronization signal is within a frequency band of a Larmor frequency and reflects a phase of the control-side clock signal.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: September 17, 2019
    Assignee: Canon Medical Systems Corporation
    Inventors: Sojiyuuro Kato, Kazuya Okamoto, Kazuyuki Soejima
  • Patent number: 10408905
    Abstract: According to one embodiment, a magnetic resonance imaging apparatus provided with a plurality of transmission channels includes a signal processing unit and a control unit. The signal processing unit acquires a radio frequency magnetic field emitted from each of the plurality of transmission channels through a receiver coil mounted on an object and measure a phase of the radio frequency magnetic field. The control unit determines a phase difference between the plurality of transmission channels based on the phase of the radio frequency magnetic field of each of the plurality of transmission channels measured by the signal processing unit. The control unit controls a phase of a radio frequency pulse inputted to each of the plurality of transmission channels, based on the phase difference.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: September 10, 2019
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Kazuyuki Soejima, Haruki Nakamura, Takuma Kawai, Kazuya Okamoto
  • Patent number: 10375821
    Abstract: A converter mounting board includes: an electronic component which is supplied an electric current; a high-frequency DC-DC converter that supplies a direct current corresponding to a fast change of the electric current of the electronic component; and a low-frequency DC-DC converter located far away from the electronic component than the high-frequency DC-DC converter and supplies a direct current corresponding to a slow change of the electric current of the electronic component.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: August 6, 2019
    Assignee: FUJITSU LIMITED
    Inventors: Kazuya Okamoto, Hironobu Kageyama
  • Publication number: 20190227135
    Abstract: In one embodiment, an MRI apparatus, which is wirelessly connected to a wireless RF coil equipped with a plurality of coil elements, includes memory circuitry configured to store at least one program and processing circuitry configured, by executing the at least one program, to (a) set an imaging region of an object, (b) identify a position of each of the plurality of coil elements included in the wireless RF coil based on a signal obtained by radio communication with the wireless RF coil, and (c) select at least one of the plurality of coil elements with respect to three axes, based on positional relationship between the imaging region and the position of each of the plurality of coil elements.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Applicant: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventor: Kazuya Okamoto
  • Patent number: 10359483
    Abstract: According to one embodiment, a radio frequency coil unit includes coil elements, first switching parts and second switching parts. The coil elements are arranged in a first direction and a second direction. Each of the first switching parts and each of the second switching parts are installed in a corresponding coil element of the coil elements and switch the corresponding coil element between an on state and an off state. At least two of the first switching parts are connected in series in the first direction by a first control signal line. At least two of the second switching parts are connected in series in the second direction by a second control signal line.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: July 23, 2019
    Assignee: Toshiba Medical Systems Corporation
    Inventor: Kazuya Okamoto
  • Patent number: 10353024
    Abstract: A magnetic resonance imaging apparatus according to an embodiment includes a plurality of first coil elements and a connector. The first coil elements are embedded in a couchtop on which a subject is placed. The connector is provided in such a region of the couchtop that is positioned on the inside of the loop of at least one of the first coil elements. It is possible to attach and detach a second coil element different from the first coil elements to and from the connector.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: July 16, 2019
    Assignee: Toshiba Medical Systems Corporation
    Inventors: Sadanori Tomiha, Kazuya Okamoto, Manabu Ishii, Satoshi Imai, Mitsuo Takagi, Miyuki Ota
  • Publication number: 20190170839
    Abstract: A magnetic resonance imaging apparatus according to an embodiment includes a wireless communication unit, a radio frequency (RF) coil, and a specifying unit. The wireless communication unit includes an antenna and that transmits and receives a wireless signal through the antenna. The RF coil includes one or more antennas and that receives the wireless signal and to respond to the received wireless signal through the one or more antennas. The specifying unit that specifies the position and the orientation of the RF coil on the basis of a response result indicated by the response from the RF coil.
    Type: Application
    Filed: February 5, 2019
    Publication date: June 6, 2019
    Applicant: Toshiba Medical Systems Corporation
    Inventors: Sadanori TOMIHA, Koji AKITA, Hideo KASAMI, Kazuya OKAMOTO
  • Patent number: 10295625
    Abstract: In one embodiment, an MRI apparatus, which is wirelessly connected to a wireless RF coil equipped with a plurality of coil elements, includes memory circuitry configured to store at least one program and processing circuitry configured, by executing the at least one program, to (a) set an imaging region of an object, (b) identify a position of each of the plurality of coil elements included in the wireless RF coil based on a signal obtained by radio communication with the wireless RF coil, and (c) select at least one of the plurality of coil elements with respect to three axes, based on positional relationship between the imaging region and the position of each of the plurality of coil elements.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: May 21, 2019
    Assignee: Toshiba Medical Systems Corporation
    Inventor: Kazuya Okamoto
  • Patent number: 10298836
    Abstract: An image sensor includes: a first light-receiving unit that: receives a modulated optical signal having being reflected on an image-capturing target and including a modulated component with an intensity modulated at a predetermined modulation frequency; and outputs a first electrical signal; a second light-receiving unit that: receives a reference optical signal with an intensity modulated in synchronization with the modulated optical signal; and outputs a second electrical signal; and a detecting unit that: is provided to a substrate stacked on a substrate including the first light-receiving unit; refers to the second electrical signal; and detects, from the first electrical signal, a third electrical signal corresponding to the modulated component.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: May 21, 2019
    Assignee: NIKON CORPORATION
    Inventors: Wataru Funamizu, Kazuya Okamoto
  • Publication number: 20190094318
    Abstract: According to one embodiment, an MRI apparatus includes a power transmitting unit a signal receiving unit and an image reconstruction unit. The power transmitting unit wirelessly transmits electric power to an RF coil device by magnetically coupled resonant type wireless power transfer. The signal receiving unit wirelessly receives a digitized nuclear magnetic resonance signal wirelessly transmitted from the RF coil device. The image reconstruction unit obtains a nuclear magnetic resonance signal received by the signal receiving unit, and reconstructs image data of an object on the basis of the nuclear magnetic resonance signal.
    Type: Application
    Filed: November 26, 2018
    Publication date: March 28, 2019
    Inventor: Kazuya Okamoto
  • Patent number: 10241166
    Abstract: A magnetic resonance imaging apparatus according to an embodiment includes a wireless communication unit, a radio frequency (RF) coil, and a specifying unit. The wireless communication unit includes an antenna and that transmits and receives a wireless signal through the antenna. The RF coil includes one or more antennas and that receives the wireless signal and to respond to the received wireless signal through the one or more antennas. The specifying unit that specifies the position and the orientation of the RF coil on the basis of a response result indicated by the response from the RF coil.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: March 26, 2019
    Assignee: Toshiba Medical Systems Corporation
    Inventors: Sadanori Tomiha, Koji Akita, Hideo Kasami, Kazuya Okamoto
  • Patent number: 10234570
    Abstract: In a PET device, a first detector includes a plurality of first scintillators and detects gamma rays emitted from positron-emitting radionuclides injected into a subject. A second detector is provided on the outer circumferential side of the first detector, includes a plurality of second scintillators arranged in an arrangement surface density lower than that of the first scintillators, and detects gamma rays that have passed through the first detector. A counted information acquiring unit acquires, as first counted information and second counted information, the detection positions, energy values, and detection time regarding gamma rays detected by the first detector and the second detector. Based on the detection time contained in each of the first counted information and the second counted information, an energy value adder generate corrected counted information by summing the energy values contained in the first counted information and the second counted information.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: March 19, 2019
    Assignees: Toshiba Medical Systems Corporation, National Institutes for Quantum and Radiological Science and Technology
    Inventors: Taiga Yamaya, Takayuki Obata, Iwao Kanno, Takuzo Takayama, Hitoshi Yamagata, Kazuya Okamoto
  • Publication number: 20190072626
    Abstract: An array coil according to an embodiment includes a plurality of element coils, a first electrically-insulative coupler, and a second electrically-insulative coupler. Each of the plurality of element coils has a first fixation point and a second fixation point. The plurality of element coils are two-dimensionally arrayed in a first direction and a second direction while overlapping one another. The first electrically-insulative coupler is configured to couple together two or more of the first fixation points in the first direction. The second electrically-insulative coupler is configured to couple together two or more of the second fixation points in the first direction.
    Type: Application
    Filed: September 6, 2018
    Publication date: March 7, 2019
    Applicant: Canon Medical Systems Corporation
    Inventor: Kazuya OKAMOTO
  • Patent number: 10197654
    Abstract: A PET-MRI device according to an embodiment includes image generators and a derivation unit. The image generators capture an image of a target placed in an effective visual field of a PET by the PET and an MRI so as to generate a PET image and an MR image. The derivation unit calculates a strain correction factor for correcting strain on the MR image based on a positional relation between a target that is expressed on the PET image and a target that is expressed on the MR image.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: February 5, 2019
    Assignee: Toshiba Medical Systems Corporation
    Inventors: Takuzo Takayama, Hitoshi Yamagata, Kazuya Okamoto
  • Patent number: 10182190
    Abstract: Provided is a light detecting apparatus including: a first photoelectric converting element which outputs a first electrical signal in accordance with an incident light including a modulated light component and a background light component; a filter which outputs a second electrical signal resulting from the modulated light component being reduced in the incident light; and a signal processor which subtracts the second electrical signal from the first electrical signal to reduce a component corresponding to the background light component in the first electrical signal.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: January 15, 2019
    Assignee: NIKON CORPORATION
    Inventors: Sota Nakanishi, Wataru Funamizu, Kazuya Okamoto, Shiro Tsunai, Isao Sugaya
  • Patent number: 10175313
    Abstract: According to one embodiment, an MRI apparatus includes a power transmitting unit, a signal receiving unit and an image reconstruction unit (62). The power transmitting unit wirelessly transmits electric power to an RF coil device by magnetically coupled resonant type wireless power transfer. The signal receiving unit wirelessly receives a digitized nuclear magnetic resonance signal wirelessly transmitted from the RF coil device. The image reconstruction unit obtains a nuclear magnetic resonance signal received by the signal receiving unit, and reconstructs image data of an object on the basis of the nuclear magnetic resonance signal.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: January 8, 2019
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventor: Kazuya Okamoto
  • Patent number: 10168400
    Abstract: A magnetic resonance imaging apparatus according to an embodiment includes an RF coil and an RF shield. The RF coil is formed in a substantially cylindrical shape. The RF shield is formed in a substantially cylindrical shape and is disposed on an outer circumferential side of the RF coil. The RF shield is provided with a plurality of slits that are in a form of a line extending in an axial direction and having an asymmetrical length in the axial direction with respect to a center in the axial direction and are disposed so as to alternately switch positions thereof in the axial direction along a circumferential direction.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: January 1, 2019
    Assignee: Toshiba Medical Systems Corporation
    Inventors: Sadanori Tomiha, Yoshitomo Sakakura, Kazuya Okamoto, Takahiro Ishihara
  • Patent number: 10125147
    Abstract: A process for preparing a compound represented by formula (Y1) or (Y2) [wherein Rx is an optionally substituted carbocyclyl lower alkyl, or the like] or a salt thereof, using a novel process for preparing a pyridone derivative represented by formula (X4) [wherein R1d is hydrogen, halogen, or the like; R2d is hydrogen, a lower alkyl optionally substituted with substituent E, or the like; R4d is a lower alkyl optionally substituted with substituent E, or the like; and R6d is a lower alkyl group optionally substituted with substituent group E, or the like].
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: November 13, 2018
    Assignee: SHIONOGI & CO., LTD.
    Inventors: Yukihito Sumino, Moriyasu Masui, Daisuke Yamada, Fumiya Ikarashi, Kazuya Okamoto
  • Patent number: 10125146
    Abstract: A crystalline methyl (4R,12aS)-7-(benzyloxy)-4-methyl-6,8-dioxo-3,4,6,8,12,12a-hexahydro-2H-pyrido[1?,2?:4,5] pyrazino[2,1-b][1,3]oxazine-9-carboxylate of the formula (U2):
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: November 13, 2018
    Assignee: SHIONOGI & CO., LTD.
    Inventors: Yukihito Sumino, Moriyasu Masui, Daisuke Yamada, Fumiya Ikarashi, Kazuya Okamoto
  • Patent number: D863504
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: October 15, 2019
    Assignee: Koganei Corporation
    Inventors: Akira Watanabe, Koichi Teraki, Joji Inaba, Hirokazu Ohki, Kazuya Okamoto