Patents by Inventor Kazuyuki Miura

Kazuyuki Miura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220178533
    Abstract: An LED light source module includes a circuit board, solid-state light emitting elements arranged on the circuit board, a heatsink disposed in contact with the circuit board and having a channel formed inside, through which refrigerant flows, and a switching unit configured to switch a flow direction of refrigerant through the channel to an opposite direction.
    Type: Application
    Filed: December 3, 2021
    Publication date: June 9, 2022
    Inventors: Takao Miura, Kazuyuki Kasumi
  • Patent number: 11326914
    Abstract: The flow rate measurement method includes: measuring a first pressure of a gas filled in a first flow path connected to a flow rate controller and a second flow path connected to the first flow path; supplying a gas to the first and second flow paths via the flow rate controller and measuring a second pressure and a temperature of the gas filled in the first and second flow paths; after the gas is exhausted from the second flow path, measuring a third pressure of the gas filled in the second flow path; measuring a fourth pressure of the gas filled in the first and second flow paths; and calculating an amount of the gas supplied to the first and second flow paths via the flow rate controller, based on the first, second, third, and fourth pressures and the temperature.
    Type: Grant
    Filed: May 27, 2019
    Date of Patent: May 10, 2022
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Norihiko Amikura, Risako Matsuda, Kazuyuki Miura
  • Publication number: 20210384017
    Abstract: The present invention efficiently captures a target object contained in an exhaust gas. A trap apparatus includes a tubular housing including a flow path through which an exhaust gas exhausted through an exhaust pipe flows, a plate-shaped first trap member arranged inside the housing so as to shield a central portion of the flow path when viewed in a direction along a central axis of the housing, and a plate-shaped second trap member arranged inside the housing at an interval from the first trap member in the direction along the central axis of the housing, the second trap member including an opening at a position corresponding to the first trap member.
    Type: Application
    Filed: June 2, 2021
    Publication date: December 9, 2021
    Inventors: Takaaki NEZU, Yuta YAMATO, Akiyoshi KAWASHIMA, Hiroki INADUMA, Kazuyuki MIURA
  • Publication number: 20210050190
    Abstract: A substrate processing method is provided. In the method, a process gas is supplied into a chamber. A pressure in the chamber is controlled to a first pressure by evacuating the chamber via a first exhaust line. Then, the pressure in the chamber is controlled to a second pressure that is higher than the first pressure by evacuating the chamber via a second exhaust line while closing the first exhaust line. Next, the pressure in the chamber is controlled to the first pressure by evacuating the chamber via the first exhaust line while closing the second exhaust line.
    Type: Application
    Filed: August 11, 2020
    Publication date: February 18, 2021
    Inventors: Kazuyuki MIURA, Norihiko AMIKURA
  • Patent number: 10876870
    Abstract: A substrate processing system includes a gas supply unit having a first gas flow channel. A second gas flow channel of a flow rate measurement system is connected to the first gas flow channel. The flow rate measurement system further includes a third gas flow channel connected to the second gas flow channel, and a pressure sensor and a temperature sensor that measure a pressure and a temperature, respectively, in the third gas flow channel. In a method, a flow rate of a gas output from a flow rate controller of the gas supply unit is calculated using a build-up method. The flow rate of a gas is calculated without using the total volume of the first gas flow channel and the second gas flow channel and temperatures in the first gas flow channel and the second gas flow channel.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: December 29, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Risako Miyoshi, Norihiko Amikura, Kazuyuki Miura, Masaaki Nagase, Satoru Yamashita, Yohei Sawada, Kouji Nishino, Nobukazu Ikeda
  • Patent number: 10871786
    Abstract: A substrate processing system includes a substrate processing apparatus and a measurement apparatus. The substrate processing apparatus includes a gas supply unit. The gas supply unit includes a flow rate controller and a secondary valve. The secondary valve is connected to a secondary side of the flow rate controller. The secondary valve is opened when a voltage is output from a first controller of the substrate processing system through a wiring. The measurement apparatus measures the flow rate of the gas output from the flow rate controller according to the instruction from the first controller. The measurement apparatus includes a second controller. The measurement apparatus includes a relay provided on the wiring. The second controller is configured to control the relay.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: December 22, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Risako Miyoshi, Norihiko Amikura, Kazuyuki Miura, Hiroshi Yazaki, Yasuhiro Shoji
  • Patent number: 10801521
    Abstract: A heating device for heating a component in a turbo molecular pump for exhausting a gas includes a heat transfer member, a heater, a first seal member and a second seal member. The heat transfer member is provided in an opening of a housing of the turbo molecular pump and has one end fixed to the component and the other end exposed to an outside. The heater in the heat transfer member heats the component through the heat transfer member. The first seal member is provided between the heat transfer member and the opening along an outer peripheral surface of the heat transfer member. The second seal member between the heat transfer member and the opening is located close to the component compared to the first seal member. The second seal member suppresses movement of radicals in a gas into a space between the heat transfer member and the opening.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: October 13, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Tsutomu Mochizuki, Kazuhiro Chiba, Ryo Murakami, Kazuyuki Miura
  • Publication number: 20200292403
    Abstract: In a substrate processing system according to an exemplary embodiment, gas supply units are configured to supply gases to chambers through first gas flow channels thereof, respectively. Chamber pressure sensors are configured to measure pressures in the chambers. A second gas flow channel is connected to the first gas flow channel of each of the gas supply units. A reference pressure sensor is configured to measure a pressure in the second gas flow channel. In a method according to an exemplary embodiment, each of the chamber pressure sensors is calibrated by using a measurement value thereof and a measurement value of the reference pressure sensor which are obtained in a state where pressures in a corresponding chamber, the first gas flow channel of a corresponding gas supply unit, and the second gas flow channel are maintained.
    Type: Application
    Filed: March 2, 2020
    Publication date: September 17, 2020
    Applicant: Tokyo Electron Limited
    Inventors: Risako MATSUDA, Norihiko AMIKURA, Kazuyuki MIURA, Keita SHOUJI
  • Publication number: 20200278225
    Abstract: The flow rate measurement method includes: measuring a first pressure of a gas filled in a first flow path connected to a flow rate controller and a second flow path connected to the first flow path; supplying a gas to the first and second flow paths via the flow rate controller and measuring a second pressure and a temperature of the gas filled in the first and second flow paths; after the gas is exhausted from the second flow path, measuring a third pressure of the gas filled in the second flow path; measuring a fourth pressure of the gas filled in the first and second flow paths; and calculating an amount of the gas supplied to the first and second flow paths via the flow rate controller, based on the first, second, third, and fourth pressures and the temperature.
    Type: Application
    Filed: May 27, 2019
    Publication date: September 3, 2020
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Norihiko AMIKURA, Risako MATSUDA, Kazuyuki MIURA
  • Publication number: 20190301912
    Abstract: A substrate processing system according to an exemplary embodiment includes a substrate processing apparatus and a measurement apparatus. The substrate processing apparatus includes a gas supply unit. The gas supply unit includes a flow rate controller and a secondary valve. The secondary valve is connected to a secondary side of the flow rate controller. The secondary valve is opened when a voltage is output from a first controller of the substrate processing system through a wiring. The measurement apparatus measures the flow rate of the gas output from the flow rate controller according to the instruction from the first controller. The measurement apparatus includes a second controller. The measurement apparatus includes a relay provided on the wiring. The second controller is configured to control the relay.
    Type: Application
    Filed: March 22, 2019
    Publication date: October 3, 2019
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Risako MIYOSHI, Norihiko AMIKURA, Kazuyuki MIURA, Hiroshi YAZAKI, Yasuhiro SHOJI
  • Publication number: 20190212176
    Abstract: A substrate processing system includes a gas supply unit having a first gas flow channel. A second gas flow channel of a flow rate measurement system is connected to the first gas flow channel. The flow rate measurement system further includes a third gas flow channel connected to the second gas flow channel, and a pressure sensor and a temperature sensor that measure a pressure and a temperature, respectively, in the third gas flow channel. In a method of an embodiment, a flow rate of a gas output from a flow rate controller of the gas supply unit is calculated using a build-up method. The flow rate of a gas is calculated without using the total volume of the first gas flow channel and the second gas flow channel and temperatures in the first gas flow channel and the second gas flow channel.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 11, 2019
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Risako MIYOSHI, Norihiko AMIKURA, Kazuyuki MIURA, Masaaki NAGASE, Satoru YAMASHITA, Yohei SAWADA, Kouji NISHINO, Nobukazu IKEDA
  • Patent number: 9921089
    Abstract: A pressure type flow rate control apparatus is provided wherein flow rate of fluid passing through an orifice is computed as Qc=KP1 (where K is a proportionality constant) or as Qc=KP2m (P1-P2)n (where K is a proportionality constant, m and n constants) by using orifice upstream side pressure P1 and/or orifice downstream side pressure P2. A fluid passage between the downstream side of a control valve and a fluid supply pipe of the pressure type flow rate control apparatus comprises at least 2 fluid passages in parallel, and orifices having different flow rate characteristics are provided for each of these fluid passages, wherein fluid in a small flow quantity area flows to one orifice for flow control of fluid in the small flow quantity area, while fluid in a large flow quantity area flows to the other orifice for flow control of fluid in the large flow quantity area.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: March 20, 2018
    Assignees: Fujikin Incorporated, National University Corporation Tohuku University, Tokyo Electron Ltd.
    Inventors: Tadahiro Ohmi, Masahito Saito, Shoichi Hino, Tsuyoshi Shimazu, Kazuyuki Miura, Kouji Nishino, Masaaki Nagase, Katsuyuki Sugita, Kaoru Hirata, Ryousuke Dohi, Takashi Hirose, Tsutomu Shinohara, Nobukazu Ikeda, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Publication number: 20170298958
    Abstract: A heating device for heating a component in a turbo molecular pump for exhausting a gas includes a heat transfer member, a heater, a first seal member and a second seal member. The heat transfer member is provided in an opening of a housing of the turbo molecular pump and has one end fixed to the component and the other end exposed to an outside. The heater in the heat transfer member heats the component through the heat transfer member. The first seal member is provided between the heat transfer member and the opening along an outer peripheral surface of the heat transfer member. The second seal member between the heat transfer member and the opening is located close to the component compared to the first seal member. The second seal member suppresses movement of radicals in a gas into a space between the heat transfer member and the opening.
    Type: Application
    Filed: April 12, 2017
    Publication date: October 19, 2017
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Tsutomu MOCHIZUKI, Kazuhiro CHIBA, Ryo MURAKAMI, Kazuyuki MIURA
  • Patent number: 9793102
    Abstract: In one embodiment, a semiconductor manufacturing apparatus includes a stage provided in a chamber, and a conveying module configured to convey a plurality of wafers into the chamber and to set the plurality of wafers on the stage. The apparatus further includes a controller configured to divide treatment time for simultaneously treating the plurality of wafers on the stage into first to K-th treatment periods where K is an integer of two or more, and to change positions of one or more of the plurality of wafers on the stage by the conveying module according to the treatment periods.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: October 17, 2017
    Assignee: Toshiba Memory Corporation
    Inventors: Kazuyuki Miura, Kensuke Takahashi
  • Patent number: 9734993
    Abstract: A semiconductor manufacturing apparatus is capable of reducing power consumption. The semiconductor manufacturing apparatus 1 includes a processing chamber 2 that has a top surface 2a and forms a processing space S therein; a mounting table 3 provided in the processing space S; an upper electrode 20 provided above the mounting table 3 to face the mounting table 3; heaters 35 and 36 provided around the upper electrode 20 and below the top surface 2a of the processing chamber 2 and configured to heat the upper electrode 20; and a heat insulating unit 50, mounted on the top surface 2a of the processing chamber 2, having a plate-shaped member 51 and a heat insulating member 52 that is provided on one main surface 51a of the plate-shaped member 51.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: August 15, 2017
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Atsushi Kobayashi, Kazuyuki Miura, Akira Yasumuro
  • Publication number: 20160274595
    Abstract: A pressure type flow rate control apparatus is provided wherein flow rate of fluid passing through an orifice is computed as Qc=KP1 (where K is a proportionality constant) or as Qc=KP2m(P1?P2)n (where K is a proportionality constant, m and n constants) by using orifice upstream side pressure P1 and/or orifice downstream side pressure P2. A fluid passage between the downstream side of a control valve and a fluid supply pipe of the pressure type flow rate control apparatus comprises at least 2 fluid passages in parallel, and orifices having different flow rate characteristics are provided for each of these fluid passages, wherein fluid in a small flow quantity area flows to one orifice for flow control of fluid in the small flow quantity area, while fluid in a large flow quantity area flows to the other orifice for flow control of fluid in the large flow quantity area.
    Type: Application
    Filed: June 2, 2016
    Publication date: September 22, 2016
    Inventors: Tadahiro Ohmi, Masahito Saito, Shoichi Hino, Tsuyoshi Shimazu, Kazuyuki Miura, Kouji Nishino, Masaaki Nagase, Katsuyuki Sugita, Kaoru Hirata, Ryousuke Dohi, Takashi Hirose, Tsutomu Shinohara, Nobukazu Ikeda, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Patent number: 9383758
    Abstract: A pressure type flow rate control apparatus is provided wherein flow rate of fluid passing through an orifice is computed as Qc=KP1 (where K is a proportionality constant) or as Qc=KP2m(P1?P2)n (where K is a proportionality constant, m and n constants) by using orifice upstream side pressure P1 and/or orifice downstream side pressure P2. A fluid passage between the downstream side of a control valve and a fluid supply pipe of the pressure type flow rate control apparatus comprises at least 2 fluid passages in parallel, and orifices having different flow rate characteristics are provided for each of these fluid passages, wherein fluid in a small flow quantity area flows to one orifice for flow control of fluid in the small flow quantity area, while fluid in a large flow quantity area flows to the other orifice for flow control of fluid in the large flow quantity area.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: July 5, 2016
    Assignees: Fujikin Incorporated, National University Corporation Tohoku University, Tokyo Electron Ltd.
    Inventors: Tadahiro Ohmi, Masahito Saito, Shoichi Hino, Tsuyoshi Shimazu, Kazuyuki Miura, Kouji Nishino, Masaaki Nagase, Katsuyuki Sugita, Kaoru Hirata, Ryousuke Dohi, Takashi Hirose, Tsutomu Shinohara, Nobukazu Ikeda, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Publication number: 20160109886
    Abstract: A pressure type flow rate control apparatus is provided wherein flow rate of fluid passing through an orifice is computed as Qc=KP1 (where K is a proportionality constant) or as Qc=KP2m(P1?P2)n (where K is a proportionality constant, m and n constants) by using orifice upstream side pressure P1 and/or orifice downstream side pressure P2. A fluid passage between the downstream side of a control valve and a fluid supply pipe of the pressure type flow rate control apparatus comprises at least 2 fluid passages in parallel, and orifices having different flow rate characteristics are provided for each of these fluid passages, wherein fluid in a small flow quantity area flows to one orifice for flow control of fluid in the small flow quantity area, while fluid in a large flow quantity area flows to the other orifice for flow control of fluid in the large flow quantity area.
    Type: Application
    Filed: December 21, 2015
    Publication date: April 21, 2016
    Inventors: Tadahiro Ohmi, Masahito Saito, Shoichi Hino, Tsuyoshi Shimazu, Kazuyuki Miura, Kouji Nishino, Masaaki Nagase, Katsuyuki Sugita, Kaoru Hirata, Ryousuke Dohi, Takashi Hirose, Tsutomu Shinohara, Nobukazu Ikeda, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka
  • Publication number: 20160062349
    Abstract: In one embodiment, a semiconductor manufacturing apparatus includes a stage provided in a chamber, and a conveying module configured to convey a plurality of wafers into the chamber and to set the plurality of wafers on the stage. The apparatus further includes a controller configured to divide treatment time for simultaneously treating the plurality of wafers on the stage into first to K-th treatment periods where K is an integer of two or more, and to change positions of one or more of the plurality of wafers on the stage by the conveying module according to the treatment periods.
    Type: Application
    Filed: March 11, 2015
    Publication date: March 3, 2016
    Inventors: KAZUYUKI MIURA, KENSUKE TAKAHASHI
  • Publication number: 20150160662
    Abstract: A pressure type flow rate control apparatus is provided wherein flow rate of fluid passing through an orifice is computed as Qc=KP1 (where K is a proportionality constant) or as Qc=KP2m (P1?P2)n (where K is a proportionality constant, m and n constants) by using orifice upstream side pressure P1 and/or orifice downstream side pressure P2. A fluid passage between the downstream side of a control valve and a fluid supply pipe of the pressure type flow rate control apparatus comprises at least 2 fluid passages in parallel, and orifices having different flow rate characteristics are provided for each of these fluid passages, wherein fluid in a small flow quantity area flows to one orifice for flow control of fluid in the small flow quantity area, while fluid in a large flow quantity area flows to the other orifice for flow control of fluid in the large flow quantity area.
    Type: Application
    Filed: February 19, 2015
    Publication date: June 11, 2015
    Inventors: Tadahiro Ohmi, Masahito Saito, Shoichi Hino, Tsuyoshi Shimazu, Kazuyuki Miura, Kouji Nishino, Masaaki Nagase, Katsuyuki Sugita, Kaoru Hirata, Ryousuke Dohi, Takashi Hirose, Tsutomu Shinohara, Nobukazu Ikeda, Tomokazu Imai, Toshihide Yoshida, Hisashi Tanaka