Patents by Inventor Kei Saegusa

Kei Saegusa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10815557
    Abstract: A copper alloy sheet material which contains 0.5 to 2.5% by mass of Ni, 0.5 to 2.5% by mass of Co, 0.30 to 1.2% by mass of Si and 0.0 to 0.5% by mass of Cr, the balance being Cu and unavoidable impurities. The material fulfills the relationships 1.0?I {200}/I0 {200}?5.0 and 5.0 ?m?GS?60.0 ?m, and these have the relationship (Equation 1): 5.0?{(I {200}/I0 {200})/GS}×100?21.0, in which the I {200} represents an X-ray diffraction intensity of a {200} crystal plane, the I0 {200} represents an X-ray diffraction intensity of a {200} crystal plane of standard pure copper powder, and the GS (?m) represents an average crystal grain size. An electrical conductivity is 43.5% to 55.0% IACS and 0.2% yield strength is 720 to 900 MPa.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: October 27, 2020
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Kei Saegusa
  • Patent number: 10662515
    Abstract: A copper alloy sheet material includes 0.5 to 2.5 mass % of Ni, 0.5 to 2.5 mass % of Co, 0.30 to 1.2 mass % of Si and 0.0 to 0.5 mass % of Cr and the balance Cu and unavoidable impurities, wherein an X-ray diffraction intensity ratio is 1.0?I{200}/I0{200}?5.0 when I{200} is a result of the X-ray diffraction intensity of {200} crystal plane of sheet surface and I0{200} is a result of the X-ray diffraction intensity of {200} crystal plane of a standard powder of pure copper, and wherein 0.2% yield strength in a rolling parallel direction (RD) is 800 MPa or more and 950 MPa or less, an electrical conductivity of 43.5% IACS or more and 53.0% IACS or less, 180 degree bending workability in a rolling parallel direction (GW) and a rolling perpendicular direction (BW) is R/t=0, and a difference between the rolling parallel direction (RD) and a rolling perpendicular direction (TD) of the 0.2% yield strength is 40 MPa or less.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: May 26, 2020
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Kei Saegusa
  • Patent number: 10002684
    Abstract: A copper alloy according to the present invention is a copper alloy rolled to be plate-shaped. The copper alloy contains 8.5 to 9.5 mass % of Ni, 5.5 to 6.5 mass % of Sn with a remainder being Cu and unavoidable impurities. An average diameter of crystal grains in a cross section perpendicular to a rolling direction is less than 6 ?m. A ratio x/y of an average length x of the crystal grains in a plate width direction to an average length y in a plate thickness direction satisfies 1?x/y?2.5. An X-ray diffracted intensity ratio in a plate surface parallel to the rolling direction of the copper alloy includes, when an X-ray diffracted intensity of a (220) plane is standardized as 1, an intensity ratio of a (200) plane being 0.30 or less, an intensity ratio of a (111) plane being 0.45 or less, and an intensity ratio of a (311) plane being 0.60 or less. The intensity ratio of the (111) plane is greater than the intensity ratio of the (200) plane and smaller than the intensity ratio of the (311) plane.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: June 19, 2018
    Assignee: NGK Insulators, Ltd.
    Inventors: Takefumi Ito, Chisako Maeda, Yuji Yoshida, Kei Saegusa, Takayuki Kemmotsu
  • Publication number: 20170283924
    Abstract: A copper alloy sheet material which contains 0.5 to 2.5% by mass of Ni, 0.5 to 2.5% by mass of Co, 0.30 to 1. 2% by mass of Si and 0.0 to 0.5% by mass of Cr, the balance being Cu and unavoidable impurities. The material fulfills the relationships 1.0?I {200}/I0 {200}?5.0 and 5.0 ?m?GS?60.0 ?m, and these have the relationship (Equation 1): 5.0?{(I {200}/I0 {200})/GS}×100?21.0, in which the I {200} represents an X-ray diffraction intensity of a {200} crystal plane, the I0 {200} represents an X-ray diffraction intensity of a {200} crystal plane of standard pure copper powder, and the GS (?m) represents an average crystal grain size. An electrical conductivity is 43.5% to 55.0% IACS and 0.2% yield strength is 720 to 900 MPa.
    Type: Application
    Filed: March 23, 2017
    Publication date: October 5, 2017
    Inventor: KEI SAEGUSA
  • Publication number: 20170283925
    Abstract: A copper alloy sheet material includes 0.5 to 2.5 mass % of Ni, 0.5 to 2.5 mass % of Co, 0.30 to 1.2 mass % of Si and 0.0 to 0.5 mass % of Cr and the balance Cu and unavoidable impurities, wherein an X-ray diffraction intensity ratio is 1.0?I{200}/I0{200}?5.0 when I{200} is a result of the X-ray diffraction intensity of {200} crystal plane of sheet surface and I0{200} is a result of the X-ray diffraction intensity of {200} crystal plane of a standard powder of pure copper, and wherein 0.2% yield strength in a rolling parallel direction (RD) is 800 MPa or more and 950 MPa or less, an electrical conductivity of 43.5% IACS or more and 53.0% IACS or less, 180 degree bending workability in a rolling parallel direction (GW) and a rolling perpendicular direction (BW) is R/t=0, and a difference between the rolling parallel direction (RD) and a rolling perpendicular direction (TD) of the 0.2% yield strength is 40 MPa or less.
    Type: Application
    Filed: March 28, 2017
    Publication date: October 5, 2017
    Inventor: KEI SAEGUSA
  • Publication number: 20150170781
    Abstract: A copper alloy according to the present invention is a copper alloy rolled to be plate-shaped. The copper alloy contains 8.5 to 9.5 mass % of Ni, 5.5 to 6.5 mass % of Sn with a remainder being Cu and unavoidable impurities. An average diameter of crystal grains in a cross section perpendicular to a rolling direction is less than 6 ?m. A ratio x/y of an average length x of the crystal grains in a plate width direction to an average length y in a plate thickness direction satisfies 1?x/y?2.5. An X-ray diffracted intensity ratio in a plate surface parallel to the rolling direction of the copper alloy includes, when an X-ray diffracted intensity of a (220) plane is standardized as 1, an intensity ratio of a (200) plane being 0.30 or less, an intensity ratio of a (111) plane being 0.45 or less, and an intensity ratio of a (311) plane being 0.60 or less. The intensity ratio of the (111) plane is greater than the intensity ratio of the (200) plane and smaller than the intensity ratio of the (311) plane.
    Type: Application
    Filed: July 26, 2012
    Publication date: June 18, 2015
    Applicants: Mitsubishi Electric Corporation, Mitsubishi Electric Metecs Co., Ltd.
    Inventors: Takefumi Ito, Chisako Maeda, Yuji Yoshida, Kei Saegusa, Takayuki Kemmotsu