Patents by Inventor Kei Takehara

Kei Takehara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8748261
    Abstract: A semiconductor device includes a first-conductivity-type semiconductor layer, a base region of a second-conductivity-type formed in an upper portion of the first-conductivity-type semiconductor layer, first though third trenches penetrating through the base region and reaching to the first-conductivity-type semiconductor layer, the first through third trenches being linked to one another, a source interconnect layer buried in the first through third trenches, the source interconnect layer including a protruding portion, a gate electrode buried in the first trench and the third trench, and formed over the source interconnect layer, a source metal contacting the protruding portion of the source interconnect layer, and a gate metal contacting the gate electrode in the third trench. A contact face between the source metal and the protruding portion at the second trench is formed higher than a contact face between the gate metal and the gate electrode at the third trench.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: June 10, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Kei Takehara
  • Patent number: 8609493
    Abstract: A method of fabricating a semiconductor device according to the present invention includes forming a first trench and a second trench by etching the first trench further, in an epitaxial layer formed over a substrate, extending a width of the second trench, forming an oxidize film by oxidizing the extended second trench, and filling an electrode material in the first trench and the second trench including the oxidized film formed therein. The method of fabricating a semiconductor device according to the present invention enables to fabricate a semiconductor device that improves the withstand voltage between a drain and a source and reduce the on-resistance.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: December 17, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Hideo Yamamoto, Kei Takehara
  • Publication number: 20120282745
    Abstract: A method of fabricating a semiconductor device according to the present invention includes forming a first trench and a second trench by etching the first trench further, in an epitaxial layer formed over a substrate, extending a width of the second trench, forming an oxidize film by oxidizing the extended second trench, and filling an electrode material in the first trench and the second trench including the oxidized film formed therein. The method of fabricating a semiconductor device according to the present invention enables to fabricate a semiconductor device that improves the withstand voltage between a drain and a source and reduce the on-resistance.
    Type: Application
    Filed: June 19, 2012
    Publication date: November 8, 2012
    Inventors: Hideo Yamamoto, Kei Takehara
  • Patent number: 8222109
    Abstract: A method of fabricating a semiconductor device according to the present invention includes forming a first trench and a second trench by etching the first trench further, in an epitaxial layer formed over a substrate, extending a width of the second trench, forming an oxidize film by oxidizing the extended second trench, and filling an electrode material in the first trench and the second trench including the oxidized film formed therein. The method of fabricating a semiconductor device according to the present invention enables to fabricate a semiconductor device that improves the withstand voltage between a drain and a source and reduce the on-resistance.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: July 17, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Hideo Yamamoto, Kei Takehara
  • Publication number: 20120043603
    Abstract: A semiconductor device includes a first-conductivity-type semiconductor layer, a base region of a second-conductivity-type formed in an upper portion of the first-conductivity-type semiconductor layer, first though third trenches penetrating through the base region and reaching to the first-conductivity-type semiconductor layer, the first through third trenches being linked to one another, a source interconnect layer buried in the first through third trenches, the source interconnect layer including a protruding portion, a gate electrode buried in the first trench and the third trench, and formed over the source interconnect layer, a source metal contacting the protruding portion of the source interconnect layer, and a gate metal contacting the gate electrode in the third trench. A contact face between the source metal and the protruding portion at the second trench is formed higher than a contact face between the gate metal and the gate electrode at the third trench.
    Type: Application
    Filed: October 26, 2011
    Publication date: February 23, 2012
    Applicant: Renesas Electronics Corporation
    Inventor: Kei Takehara
  • Patent number: 8071445
    Abstract: In a transistor region, a source interconnect layer and a gate electrode are buried in trenches. A source extending region is provided adjacent to the transistor region or in the transistor region, and a source interconnect layer is designed to protrude from the upper end of a trench. This source interconnect layer is connected to a source electrode formed in the transistor region immediately above the trench. A gate extending region is provided outside the source extending region, and the gate electrode and a gate interconnect layer are connected. The gate electrode is formed by performing etchback without forming a resist pattern, after a polysilicon film is formed. Here, the polysilicon film remains like a side-wall on the sidewall of the portion of the source interconnect layer protruding from the upper end of the trench.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: December 6, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Kei Takehara
  • Patent number: 7863679
    Abstract: A vertical power MOSFET includes a semiconductor substrate including a trench, a gate electrode layer having a prescribed impurity concentration and being formed inside the trench, and a cap insulating layer having a lower impurity concentration than the impurity concentration of the gate electrode layer and covering the gate electrode layer to provide insulation.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: January 4, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Kei Takehara
  • Publication number: 20100273304
    Abstract: A method of fabricating a semiconductor device according to the present invention includes forming a first trench and a second trench by etching the first trench further, in an epitaxial layer formed over a substrate, extending a width of the second trench, forming an oxidize film by oxidizing the extended second trench, and filling an electrode material in the first trench and the second trench including the oxidized film formed therein. The method of fabricating a semiconductor device according to the present invention enables to fabricate a semiconductor device that improves the withstand voltage between a drain and a source and reduce the on-resistance.
    Type: Application
    Filed: April 14, 2010
    Publication date: October 28, 2010
    Inventors: Hideo YAMAMOTO, Kei TAKEHARA
  • Publication number: 20100270613
    Abstract: In a transistor region, a source interconnect layer and a gate electrode are buried in trenches. A source extending region is provided adjacent to the transistor region or in the transistor region, and a source interconnect layer is designed to protrude from the upper end of a trench. This source interconnect layer is connected to a source electrode formed in the transistor region immediately above the trench. A gate extending region is provided outside the source extending region, and the gate electrode and a gate interconnect layer are connected. The gate electrode is formed by performing etchback without forming a resist pattern, after a polysilicon film is formed. Here, the polysilicon film remains like a side-wall on the sidewall of the portion of the source interconnect layer protruding from the upper end of the trench.
    Type: Application
    Filed: April 20, 2010
    Publication date: October 28, 2010
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Kei Takehara
  • Publication number: 20080093665
    Abstract: A vertical power MOSFET includes a semiconductor substrate including a trench, a gate electrode layer having a prescribed impurity concentration and being formed inside the trench, and a cap insulating layer having a lower impurity concentration than the impurity concentration of the gate electrode layer and covering the gate electrode layer to provide insulation.
    Type: Application
    Filed: October 22, 2007
    Publication date: April 24, 2008
    Inventor: Kei Takehara
  • Patent number: 5340459
    Abstract: A reactive sputtering system is provided with a side gas distribution pipe for introducing a reactive gas and argon gas into a reaction chamber and a ring-shaped gas distribution pipe for introducing the argon gas or reactive gas into the reaction chamber independently of the side gas distribution pipe, whereby the concentration of the reactive gas can be controlled with respect to a target in the diameter direction thereof to equalize the reaction between the reactive gas and the target material above the surface of the target and thus to provide an improved uniformity of the quality film.
    Type: Grant
    Filed: November 19, 1992
    Date of Patent: August 23, 1994
    Assignee: NEC Corporation
    Inventor: Kei Takehara