Patents by Inventor Keishi Takaki

Keishi Takaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120251039
    Abstract: Provided is a laser device comprising a substrate, an active layer, and a current confinement layer. The current confinement layer includes an oxide layer that is formed extending from a edge of the current confinement layer in a parallel plane parallel to a surface of the substrate, toward a center of the current confinement layer along the parallel plane, and that does not have an inflection point between the edge and a tip portion formed closer to the center or has a plurality of inflection points formed between the edge and the tip portion.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 4, 2012
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Hitoshi SHIMIZU, Toshihito SUZUKI, Yasumasa KAWAKITA, Keishi TAKAKI
  • Patent number: 8270447
    Abstract: A semiconductor light emitting element, comprises: an active layer; a first electrode and second electrode that inject current to the active layer; a semiconductor layer between the active layer and the first electrode; and a dielectric layer that is provided on the semiconductor layer and through which light from the active layer passes; wherein the first electrode is provided on the semiconductor layer, has an opening through which light from the active layer passes, and comprises a first electrode layer that comes in contact with and is provided on the semiconductor layer, and a second electrode layer that is provided on the first electrode layer, with the first electrode layer having less reactivity with the semiconductor layer than the second electrode layer; and the dielectric layer is provided inside the opening such that the end section on the opening side of the first electrode layer extends from the top of the semiconductor layer to the top of the dielectric layer.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: September 18, 2012
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Naoki Tsukiji, Norihiro Iwai, Keishi Takaki, Koji Hiraiwa
  • Patent number: 8204093
    Abstract: A method of manufacturing a surface emitting laser element of a vertical cavity type comprises sequential accumulation that accumulates a reflecting mirror of a multilayered film layer at a lower side of the substrate, and accumulates semiconductor layers onto the reflecting minor at the lower side that comprises an active layer and a contact layer. The process includes forming a first layer of dielectric substance on the contact layer, forming an electrode of an annular shape on the contact layer that has an open part to be arranged for the first layer at an inner side of the open part, and forming a second layer of dielectric substance to cover the first layer and a gap formed between the first layer and the electrode of the annular shape. The accumulated semiconductor layers are etched to form a mesa post, using the electrode of the annular shape as a mask.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: June 19, 2012
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Keishi Takaki, Norihiro Iwai, Koji Hiraiwa
  • Patent number: 8178364
    Abstract: A method of performing a wafer level burn-in test for a plurality of surface-emitting laser devices formed on a wafer includes causing a plurality of contact electrodes arranged in a same plane with a pitch same as that of the surface-emitting laser devices being electrically connected to each other to have contact with pad electrodes of the surface-emitting laser devices, respectively, and applying a current to second electrodes of the surface-emitting laser devices and the contact electrodes. The wafer level burn-in test is performed while heating the wafer at a predetermined temperature. Laser lights emitted from the surface-emitting laser devices are monitored during the wafer level burn-in test.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: May 15, 2012
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Koji Hiraiwa, Takeo Kageyama, Norihiro Iwai, Keishi Takaki
  • Publication number: 20110274131
    Abstract: Included are a plurality of surface-emitting laser elements each of which includes a substrate; a lower multilayer reflective mirror and an upper multilayer reflective mirror that are formed on the substrate and are formed from a periodic structure of a high-refractive index layer and a low-refractive index layer; an active layer provided between the lower multilayer reflective mirror and the upper multilayer reflective mirror; a lower contact layer positioned between the active layer and the lower multilayer reflective mirror, and is extended to an outer peripheral side of the upper multilayer reflective mirror; a lower electrode formed on a surface of a portion where the lower contact layer is extended; and an upper electrode for injecting a current to the active layer, wherein the surface-emitting laser elements are electrically connected in series to each other to form a series-connected element array.
    Type: Application
    Filed: January 20, 2010
    Publication date: November 10, 2011
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Keishi Takaki, Hirotatsu Ishii, Hitoshi Shimizu, Norihiro Iwai
  • Publication number: 20110261852
    Abstract: A semiconductor laser element includes a first electrode, a second electrode, a first reflecting mirror, a second reflecting mirror, and a resonator. The resonator includes an active layer, a current confinement layer, a first semiconductor layer having a first doping concentration formed at a side opposite to the active layer across the current confinement layer, and a second semiconductor layer having a second doping concentration higher than the first doping concentration formed between the first semiconductor layer and the current confinement layer. The first electrode is provided to contact a part of a surface of the first semiconductor layer. The first semiconductor layer has a diffusion portion into which a component of the first electrode diffuses. The second semiconductor layer contacts the diffusion portion. The second semiconductor layer is positioned at a node of a standing wave at a time of laser oscillation of the semiconductor laser element.
    Type: Application
    Filed: December 10, 2009
    Publication date: October 27, 2011
    Applicant: FURUKAWA ELECTRIC CO., LTD
    Inventors: Suguru Imai, Keishi Takaki, Norihiro Iwai, Kinuka Tanabe, Hitoshi Shimizu, Hirotatsu Ishii
  • Publication number: 20110261846
    Abstract: A surface emitting laser apparatus includes an arithmetic processing unit including an I/O unit for externally inputting an instruction and a core unit that performs an operation based on the instruction and outputs a differential voltage signal modulated with a predetermined amplitude according to a result of the operation, capacitors respectively arranged on output paths of the differential voltage signal, and a surface emitting laser device that is directly connected to the arithmetic processing unit via the capacitors. An I/O voltage and a core voltage are externally supplied to the I/O unit and the core unit, respectively. The arithmetic processing unit generates a driving voltage signal by superimposing the differential voltage signal with the core voltage commonly supplied as a bias voltage without stepping up or down the core voltage and without amplifying the differential voltage signal and supplies the driving voltage signal to the surface emitting laser device.
    Type: Application
    Filed: April 20, 2011
    Publication date: October 27, 2011
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Keishi TAKAKI, Naoki TSUKIJI, Suguru IMAI
  • Publication number: 20110241564
    Abstract: A surface emitting laser is formed of a composition in which bandgap energy of layers from immediately above a current confinement layer to a second conductivity type contact layer is reduced towards the second conductivity type contact layer in a stacking direction, and a composition in which bandgap energy of layers from immediately below the current confinement layer to a first conductivity type contact layer is reduced towards the first conductivity type contact layer in a stacking direction while bypassing a quantum well layer or a quantum dot of an active layer, and includes a second conductivity type cladding layer including a material for reducing the mobility of carriers.
    Type: Application
    Filed: March 30, 2011
    Publication date: October 6, 2011
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Hitoshi SHIMIZU, Takeo KAGEYAMA, Keishi TAKAKI, Norihiro IWAI
  • Publication number: 20110064108
    Abstract: A method of manufacturing a surface emitting laser element of a vertical cavity type in accordance with the present invention is characterized in that comprises the following steps of: applying a process of accumulations on a substrate, the process sequentially including accumulating a reflecting mirror of a multilayered film layer at a lower side thereof on to the substrate, and accumulating layers of a semiconductor as a plurality thereof on to the reflecting mirror of the multilayered film layer at the lower side thereof, that comprises an active layer and that further comprises a contact layer at a top layer thereof as well; forming a first layer of a dielectric substance as a process of a formation of the first layer of the dielectric substance at a part of regions on the contact layer; forming an electrode of an annular shape as a process of a formation of the electrode of the annular shape on the contact layer, that has an open part at a center thereof, in order to be arranged for the first layer of th
    Type: Application
    Filed: September 16, 2009
    Publication date: March 17, 2011
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Keishi Takaki, Norihiro Iwai, Koji Hiraiwa
  • Patent number: 7907653
    Abstract: In the surface emitting laser, low threshold electric current and high-power output are achieved while maintaining single mode characteristics. The surface emitting laser comprises a layered structure formed on a GaAs substrate 10 is comprised of: a semiconductor lower DBR mirror 12, a cladding layer 14, a n-type contact layer 16, an active layer 18, an electric current constricting layer 20, a p-type cladding layer 22, a p-type contact layer 24, a phase adjusting layer 36 and a dielectric upper DBR mirror 28. The surface emitting laser should be formed such that the diameter X (?m) of the opening diameter of the previously mentioned electric current constricting layer 20 and diameter Y (?m) of the phase adjusting layer satisfy the following relation: X+1.9??Y?X+5.0? (wherein ? indicates oscillation wavelength (?m) of the surface emitting laser).
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: March 15, 2011
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Norihiro Iwai, Keishi Takaki, Suguru Imai
  • Patent number: 7888145
    Abstract: A selective oxidation layer is formed by alternately growing an AlAs layer and an XAs layer containing a group III element X with a thickness ratio in a range between 97:3 and 99:1 on a plurality of semiconductor layers including an active layer. The selective oxidation layer is selectively oxidized to manufacture a vertical-cavity surface-emitting laser.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: February 15, 2011
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Keishi Takaki, Norihiro Iwai, Hitoshi Shimizu, Takeo Kageyama
  • Patent number: 7881353
    Abstract: Provided is a surface emitting laser element array of low cost and high reliability. The surface emitting laser element array has a substrate having a semiconductor of a first conduction type; and a plurality of surface emitting laser elements each having, above the substrate, an active layer sandwiched between a first conduction type semiconductor layer area and a second conduction type semiconductor layer area and disposed between a upper reflective mirror and a lower reflective mirror, the surface emitting laser elements being separated from each other by an electric separation structure formed having such a depth as to reach the substrate. The first conduction type semiconductor layer area is arranged between the substrate and the active layer.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: February 1, 2011
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Takeo Kageyama, Keishi Takaki, Naoki Tsukiji, Norihiro Iwai, Hitoshzi Shimizu, Yasumasa Kawakita, Suguru Imai
  • Publication number: 20110003403
    Abstract: A method of performing a wafer level burn-in test for a plurality of surface-emitting laser devices formed on a wafer includes causing a plurality of contact electrodes arranged in a same plane with a pitch same as that of the surface-emitting laser devices being electrically connected to each other to have contact with pad electrodes of the surface-emitting laser devices, respectively, and applying a current to second electrodes of the surface-emitting laser devices and the contact electrodes. The wafer level burn-in test is performed while heating the wafer at a predetermined temperature. Laser lights emitted from the surface-emitting laser devices are monitored during the wafer level burn-in test.
    Type: Application
    Filed: June 8, 2010
    Publication date: January 6, 2011
    Applicant: THE FURUKAWA ELECTRIC CO., LTD
    Inventors: Koji HIRAIWA, Takeo Kageyama, Norihiro Iwai, Keishi Takaki
  • Patent number: 7801198
    Abstract: A surface emitting laser element includes an active layer and a dielectric multilayer mirror formed with a plurality of dielectric layers having different refractive indices for reflecting a light generated in the active layer. At least one of boundaries between the dielectric layers is formed to have a predetermined surface roughness to obtain a desired target reflectance of the dielectric multilayer mirror.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: September 21, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Takeo Kageyama, Norihiro Iwai, Yasumasa Kawakita, Keishi Takaki, Peter Nyakas
  • Publication number: 20100232465
    Abstract: A semiconductor light emitting element, comprises: an active layer; a first electrode and second electrode that inject current to the active layer; a semiconductor layer between the active layer and the first electrode; and a dielectric layer that is provided on the semiconductor layer and through which light from the active layer passes; wherein the first electrode is provided on the semiconductor layer, has an opening through which light from the active layer passes, and comprises a first electrode layer that comes in contact with and is provided on the semiconductor layer, and a second electrode layer that is provided on the first electrode layer, with the first electrode layer having less reactivity with the semiconductor layer than the second electrode layer; and the dielectric layer is provided inside the opening such that the end section on the opening side of the first electrode layer extends from the top of the semiconductor layer to the top of the dielectric layer.
    Type: Application
    Filed: January 7, 2010
    Publication date: September 16, 2010
    Applicant: FURUKAWA ELECTRIC CO., LTD
    Inventors: Naoki TSUKIJI, Norihiro IWAI, Keishi TAKAKI, Koji HIRAIWA
  • Publication number: 20090304036
    Abstract: In the surface emitting laser, low threshold electric current and high-power output are achieved while maintaining single mode characteristics. The surface emitting laser comprises a layered structure formed on a GaAs substrate 10 is comprised of: a semiconductor lower DBR mirror 12, a cladding layer 14, a n-type contact layer 16, an active layer 18, an electric current constricting layer 20, a p-type cladding layer 22, a p-type contact layer 24, a phase adjusting layer 36 and a dielectric upper DBR mirror 28. The surface emitting laser should be formed such that the diameter X (?m) of the opening diameter of the previously mentioned electric current constricting layer 20 and diameter Y (?m) of the phase adjusting layer satisfy the following relation: X+1.9??Y?X+5.0? (wherein ? indicates oscillation wavelength (?m) of the surface emitting laser).
    Type: Application
    Filed: February 18, 2009
    Publication date: December 10, 2009
    Applicant: The Furukawa Electric Co., LTD
    Inventors: Norihiro Iwai, Keishi Takaki, Suguru Imai
  • Publication number: 20090245312
    Abstract: Provided is a surface emitting laser element array of low cost and high reliability. The surface emitting laser element array has a substrate having a semiconductor of a first conduction type; and a plurality of surface emitting laser elements each having, above the substrate, an active layer sandwiched between a first conduction type semiconductor layer area and a second conduction type semiconductor layer area and disposed between a upper reflective mirror and a lower reflective mirror, the surface emitting laser elements being separated from each other by an electric separation structure formed having such a depth as to reach the substrate. The first conduction type semiconductor layer area is arranged between the substrate and the active layer.
    Type: Application
    Filed: March 30, 2009
    Publication date: October 1, 2009
    Applicant: THE FURUKAWA ELECTRIC CO., LTD
    Inventors: Takeo Kageyama, Keishi Takaki, Naoki Tsukiji, Norihiro Iwai, Hitoshzi Shimizu, Yasumasa Kawakita, Suguru Imai
  • Patent number: 7593448
    Abstract: A semiconductor laser module includes a distributed-feedback laser. When a predetermined transmission loss, a predetermined number of channels, and a predetermined modulation factor per channel are given, a cavity length of the distributed-feedback laser satisfies a condition that a distortion is less than a predetermined distortion level and a carrier-to-noise ratio is more than a predetermined value based on a relation between transmission loss, number of channels, modulation factor per channel, and the cavity length of the distributed-feedback laser.
    Type: Grant
    Filed: May 4, 2004
    Date of Patent: September 22, 2009
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Keishi Takaki, Junji Yoshida
  • Publication number: 20080273569
    Abstract: A VCSEL device includes a polyimide having a larger thickness (d1) on the surface of a semiconductor layer structure in a peripheral area 54, which is separated from a mesapost by an annular groove 52. The top surface of the central mesapost 30 is located at a lower position compared to the top surface of the peripheral area 54. A structure is obtained wherein the mesapost is not contacted by a jig or probe during handling the device in the test or assembly thereof.
    Type: Application
    Filed: July 2, 2008
    Publication date: November 6, 2008
    Applicant: The Furukawa Electric Co, Ltd.
    Inventors: Koji HIRAIWA, Takeo Kageyama, Norihiro Iwai, Keishi Takaki
  • Publication number: 20080240192
    Abstract: A surface emitting laser element includes an active layer and a dielectric multilayer mirror formed with a plurality of dielectric layers having different refractive indices for reflecting a light generated in the active layer. At least one of boundaries between the dielectric layers is formed to have a predetermined surface roughness to obtain a desired target reflectance of the dielectric multilayer mirror.
    Type: Application
    Filed: March 28, 2008
    Publication date: October 2, 2008
    Applicant: The Furukawa Electric Co, Ltd.
    Inventors: Takeo KAGEYAMA, Norihiro Iwai, Yasumasa Kawakita, Keishi Takaki, Peter Nyakas