Patents by Inventor Keizo Akutagawa

Keizo Akutagawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230088378
    Abstract: A wireless power transfer system 1 includes a power transmission device 2 and a power reception device 3. The power transmission device 2 is a power transmission device 2 installed in a road 4, is provided with a power transmission coil 21 that transmits power wirelessly, and is configured such that when installed in the road 4, the normal line of a coil plane of the power transmission coil 21 is inclined with respect to the normal line of the road surface of the road 4 in a lateral cross section of the road 4. The power reception device 3 is provided with a power reception coil 31 that receives power wirelessly, and at least a portion of the power reception coil 31 is housed in the wheel 6 of the moving body 5.
    Type: Application
    Filed: September 10, 2020
    Publication date: March 23, 2023
    Applicants: THE UNIVERSITY OF TOKYO, BRIDGESTONE CORPORATION, NSK Ltd.
    Inventors: Hiroshi FUJIMOTO, Osamu SHIMIZU, Keizo AKUTAGAWA, Yasumichi WAKAO, Isao KUWAYAMA, Daisuke GUNJI
  • Publication number: 20230090157
    Abstract: A wireless power reception system 1 includes: a power reception device 5 including a power reception coil 51 that receives power supplied wirelessly from a power transmission coil 41 of a power transmission device 4 installed in a road surface, at least a portion of the power reception coil 51 being housed in a wheel 3 of a moving body 2; and an onboard device 6 which is installed in the moving body 2 and which is electrically connected to the power reception device 5, wherein the power reception device 5 can transmit received power to the onboard device 6, and the power reception coil 51 has a convex shape pointing downward in a side view as seen from an axial direction of the wheel 3.
    Type: Application
    Filed: September 10, 2020
    Publication date: March 23, 2023
    Applicants: THE UNIVERSITY OF TOKYO, BRIDGESTONE CORPORATION, NSK Ltd.
    Inventors: Hiroshi FUJIMOTO, Osamu SHIMIZU, Keizo AKUTAGAWA, Yasumichi WAKAO, Isao KUWAYAMA, Daisuke GUNJI
  • Publication number: 20230086747
    Abstract: A wireless power reception system 1 includes: a power reception device 5 including a power reception coil 51 that receives power supplied wirelessly from a power transmission coil 41 of a power transmission device 4 installed in a road surface, at least a portion of the power reception coil 51 being housed in a wheel 3 of a moving body 2; and an onboard device 6 which is installed in the moving body 2 and which is electrically connected to the power reception device 5, wherein the power reception device 5 can transmit received power to the onboard device 6, and the power reception coil 51 includes a stacked plurality of spiral coil layers 52a and 52b.
    Type: Application
    Filed: September 10, 2020
    Publication date: March 23, 2023
    Applicants: THE UNIVERSITY OF TOKYO, BRIDGESTONE CORPORATION, NSK Ltd.
    Inventors: Hiroshi FUJIMOTO, Osamu SHIMIZU, Keizo AKUTAGAWA, Yasumichi WAKAO, Isao KUWAYAMA, Daisuke GUNJI
  • Publication number: 20220416580
    Abstract: A wireless power reception system 1 includes: a power reception device 5 including a power reception coil 51 that receives power supplied wirelessly from a power transmission coil 41 of a power transmission device 4 installed in a road surface, at least a portion of the power reception coil 51 being housed in a wheel 3 of a moving body 2; and a driving device 61 which is installed in the wheel 3 and which drives the wheel 3 with power received by the power reception device 5, wherein the power reception device 5 is provided with a converter 56a and an inverter 56b, at least a portion of the converter 56a and at least a portion of the inverter 56b are housed in the wheel 3, the converter 56a is positioned vertically above the power reception coil 51, and the inverter 56b is positioned vertically above the converter 56a.
    Type: Application
    Filed: September 10, 2020
    Publication date: December 29, 2022
    Applicants: THE UNIVERSITY OF TOKYO, BRIDGESTONE CORPORATION, NSK Ltd.
    Inventors: Hiroshi FUJIMOTO, Osamu SHIMIZU, Keizo AKUTAGAWA, Yasumichi WAKAO, Isao KUWAYAMA, Daisuke GUNJI
  • Publication number: 20220266702
    Abstract: A wireless power receiving system includes: a power receiving device having a power receiving coil configured to receive electric power supplied wirelessly from a power transmission coil of a power transmission device installed on a road surface, at least part of the power receiving coil being contained in a vehicle wheel; and in-vehicle devices installed in a mobile object, the in-vehicle devices being energizably connected to the power receiving device. The power receiving device transmits the received electric power to the in-vehicle devices.
    Type: Application
    Filed: July 22, 2020
    Publication date: August 25, 2022
    Applicants: THE UNIVERSITY OF TOKYO, BRIDGESTONE CORPORATION, NSK Ltd.
    Inventors: Hiroshi FUJIMOTO, Takehiro IMURA, Osamu SHIMIZU, Katsuhiro HATA, Keizo AKUTAGAWA, Yasumichi WAKAO, Isao KUWAYAMA, Daisuke GUNJI
  • Patent number: 9405869
    Abstract: An elastic response performance prediction method that employs a finite element analysis method to predict an elastic response performance expressing deformation behavior of a rubber product. The elastic response performance of the rubber product is predicted by employing a constitutive equation that expresses temperature and strain dependence of strain energy in the rubber product expressed using a parameter representing intermolecular interaction.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: August 2, 2016
    Assignee: BRIDGESTONE CORPORATION
    Inventor: Keizo Akutagawa
  • Patent number: 9002687
    Abstract: The present invention relates to a method for predicting a deformation behavior of a rubber material capable of accurately analyzing a deformation behavior of a rubber material even in a micro level, and more specifically, to a method for predicting a deformation behavior of a rubber material, including: generating a three-dimensional model of the rubber material formed by adding a filler to a rubber; applying a configuration condition specifying a relationship between a stress and a strain on the basis of thickness information and temperature information obtained on the basis of a molecular dynamics approach to a rubber layer portion constituting the three-dimensional model; and, analyzing the deformation behavior of the rubber material.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: April 7, 2015
    Assignee: Bridgestone Corporation
    Inventors: Satoshi Hamatani, Keizo Akutagawa, Hiroshi Shima
  • Publication number: 20130226522
    Abstract: An elastic response performance prediction method that employs a finite element analysis method to predict an elastic response performance expressing deformation behavior of a rubber product. The elastic response performance of the rubber product is predicted by employing a constitutive equation that expresses temperature and strain dependence of strain energy in the rubber product, and that incorporates a number of links between cross-linked points in a statistical molecule chain, which is expressed using a parameter representing extension crystallization.
    Type: Application
    Filed: October 4, 2011
    Publication date: August 29, 2013
    Applicant: BRIDGESTONE CORPORATION
    Inventor: Keizo Akutagawa
  • Publication number: 20130211802
    Abstract: An elastic response performance prediction method that employs a finite element analysis method to predict an elastic response performance expressing deformation behavior of a rubber product. The elastic response performance of the rubber product is predicted by employing a constitutive equation that expresses temperature and strain dependence of strain energy in the rubber product expressed using a parameter representing intermolecular interaction.
    Type: Application
    Filed: October 4, 2011
    Publication date: August 15, 2013
    Applicant: BRIDGESTONE CORPORATION
    Inventor: Keizo Akutagawa
  • Publication number: 20110288838
    Abstract: The present invention relates to a method for predicting a deformation behavior of a rubber material capable of accurately analyzing a deformation behavior of a rubber material even in a micro level, and more specifically, to a method for predicting a deformation behavior of a rubber material, including: generating a three-dimensional model of the rubber material formed by adding a filler to a rubber; applying a configuration condition specifying a relationship between a stress and a strain on the basis of thickness information and temperature information obtained on the basis of a molecular dynamics approach to a rubber layer portion constituting the three-dimensional model; and, analyzing the deformation behavior of the rubber material.
    Type: Application
    Filed: February 2, 2010
    Publication date: November 24, 2011
    Applicant: BRIDGESTONE CORPORATION
    Inventors: Satoshi Hamatani, Keizo Akutagawa, Hiroshi Shima
  • Patent number: 7423393
    Abstract: A car control apparatus including a wheel sensor, wheel torque calculating means for calculating wheel torque from the wheel speed, drive force detecting means for detecting drive force generated by an electric motor, car body drive force calculating means for calculating car body drive force from the above drive force and wheel torque, car body drive force fluctuating component extracting means for extracting multiple frequency band fluctuating components of the car body drive force, and drive or braking force control unit for controlling the running state of a car.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: September 9, 2008
    Assignee: Kabushiki Kaisha Bridgestone
    Inventors: Yasumichi Wakao, Keizo Akutagawa
  • Patent number: 7364196
    Abstract: When feedback control is carried out to ensure that the drive torque of an electric motor for driving each wheel of a vehicle should be equal to a motor torque instruction value, micro-vibration is applied to each tire by superposing a micro-vibration signal to a drive signal for the above electric motor to change the slip ratio-friction characteristics themselves of the tire to control friction force between the tire and the surface of a road, thereby controlling the running performance of the vehicle.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: April 29, 2008
    Assignee: Kabushiki Kaisha Bridgestone
    Inventors: Keizo Akutagawa, Hiroki Sawada
  • Publication number: 20050274560
    Abstract: A car control apparatus comprising a wheel sensor 13, wheel torque calculating means 23 for calculating wheel torque from the wheel speed, drive force detecting means 12 for detecting drive force generated by an electric motor 3, car body drive force calculating means 24 for calculating car body drive force from the above drive force and wheel torque, car body drive force fluctuating component extracting means 25 for extracting multiple frequency band fluctuating components of the car body drive force, and drive or braking force control unit 22 for controlling the running state of a car, wherein drive or braking force to be applied to each wheel is obtained from main drive force, slip ratio control drive force and tire disturbance compensation drive force calculated based on the extracted fluctuating components of the car body drive force and supplied to a motor controller 11 to drive or brake the drive wheel 2 and apply micro-vibration to the tire in order to suppress micro-vibration generated between the t
    Type: Application
    Filed: May 6, 2003
    Publication date: December 15, 2005
    Inventors: Yasumichi Wakao, Keizo Akutagawa
  • Publication number: 20020167156
    Abstract: When feedback control is carried out to ensure that the drive torque of an electric motor for driving each wheel of a vehicle should be equal to a motor torque instruction value, micro-vibration is applied to each tire by superposing a micro-vibration signal to a drive signal for the above electric motor to change the slip ratio-friction characteristics themselves of the tire to control friction force between the tire and the surface of a road, thereby controlling the running performance of the vehicle.
    Type: Application
    Filed: February 27, 2002
    Publication date: November 14, 2002
    Inventors: Keizo Akutagawa, Hiroki Sawada
  • Patent number: 6140407
    Abstract: This invention relates to a pneumatic tire coated with a water-based electrically conductive coating, in which the coating contains a carbon black having a nitrogen adsorption specific surface area (N.sub.2 SA) of 70 m.sup.2 /g-180 m.sup.2 /g and a dibutyl phtalate (DBP) absorption of 70 ml/100 g-180 ml/100 g, a surface active agent and a rubber ingredient.
    Type: Grant
    Filed: December 16, 1998
    Date of Patent: October 31, 2000
    Assignee: Bridgestone Corporation
    Inventors: Keizo Akutagawa, Yasuhiro Naito, Ken Yamaguchi
  • Patent number: 5531256
    Abstract: In a flame-retardant rubber tire comprising an outer rubber body portion consisting essentially of a tread rubber layer, a sidewall rubber layer extending inward from each side edge of the tread rubber layer toward the vicinity of a bead portion in radial direction and a rubber chafer layer arranged in the vicinity of the bead portion, a flame-retardant rubber composition having an oxygen index of not less than 19.8 but not more than 27.5 is disposed so as to amount at least 20% by weight of the tread rubber layer. Such rubber tires are used in electric vehicles, automobiles, airplanes and the like and have excellent self-extinguishing property and flame-delaying property without damaging other rubber properties.
    Type: Grant
    Filed: April 21, 1994
    Date of Patent: July 2, 1996
    Assignee: Bridgestone Corporation
    Inventors: Takatsugu Hashimoto, Keizo Akutagawa, Kazuo Yagawa, Makoto Tanaka, Junichi Yamagishi, Kazuo Hachiya
  • Patent number: 5341862
    Abstract: In a flame-retardant rubber tire comprising an outer rubber body portion consisting essentially of a tread rubber layer, a sidewall rubber layer extending inward from each side edge of the tread rubber layer toward the vicinity of a bead portion in radial direction and a rubber chafer layer arranged in the vicinity of the bead portion, a flame-retardant rubber composition having an oxygen index of not less than 19.8 but not more than 27.5 is disposed so as to amount at least 20% by weight of the tread rubber layer. Such rubber tires are used in electric vehicles, automobiles, airplanes and the like and have excellent self-extinguishing property and flame-delaying property without damaging other rubber properties.
    Type: Grant
    Filed: November 12, 1992
    Date of Patent: August 30, 1994
    Assignee: Bridgestone Corporation
    Inventors: Takatsugu Hashimoto, Keizo Akutagawa, Kazuo Yagawa, Makoto Tanaka, Junichi Yamagishi, Kazuo Hachiya