Patents by Inventor Keizo Hirose

Keizo Hirose has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9960069
    Abstract: A joining device for joining substrates together includes a first holding member configured to vacuum-suck a first substrate to draw and hold the first substrate on a lower surface thereof, and a second holding member disposed below the first holding member and configured to vacuum-suck a second substrate to draw and hold the second substrate on an upper surface thereof. The second holding member includes a body portion formed into a size larger than the second substrate when seen in a plan view and configured to vacuum-suck the second substrate, a plurality of pins provided on the body portion and configured to make contact with a rear surface of the second substrate, and an outer wall portion annularly provided on the body portion at an outer side of the plurality of pins and configured to support an outer periphery portion of the rear surface of the second substrate.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: May 1, 2018
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Shintaro Sugihara, Naoto Yoshitaka, Shigenori Kitahara, Keizo Hirose
  • Patent number: 9922859
    Abstract: A joining device for joining substrates together includes a first holding member configured to vacuum-suck a first substrate to draw and hold the first substrate on a lower surface thereof, and a second holding member disposed below the first holding member and configured to vacuum-suck a second substrate to draw and hold the second substrate on an upper surface thereof. The second holding member includes a body portion formed into a size larger than the second substrate when seen in a plan view and configured to vacuum-suck the second substrate, a plurality of pins provided on the body portion and configured to make contact with a rear surface of the second substrate, and an outer wall portion annularly provided on the body portion at an outer side of the plurality of pins and configured to support an outer periphery portion of the rear surface of the second substrate.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: March 20, 2018
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Shintaro Sugihara, Naoto Yoshitaka, Shigenori Kitahara, Keizo Hirose
  • Publication number: 20140208557
    Abstract: A joining device for joining substrates together includes a first holding member configured to vacuum-suck a first substrate to draw and hold the first substrate on a lower surface thereof, and a second holding member disposed below the first holding member and configured to vacuum-suck a second substrate to draw and hold the second substrate on an upper surface thereof. The second holding member includes a body portion formed into a size larger than the second substrate when seen in a plan view and configured to vacuum-suck the second substrate, a plurality of pins provided on the body portion and configured to make contact with a rear surface of the second substrate, and an outer wall portion annularly provided on the body portion at an outer side of the plurality of pins and configured to support an outer periphery portion of the rear surface of the second substrate.
    Type: Application
    Filed: January 24, 2014
    Publication date: July 31, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Shintaro SUGIHARA, Naoto YOSHITAKA, Shigenori KITAHARA, Keizo HIROSE
  • Publication number: 20140208556
    Abstract: A joining device for joining substrates together includes a first chuck configured to draw and hold a first substrate on a lower surface thereof, a second chuck provided below the first chuck and configured to draw and hold a second substrate on an upper surface thereof, and a chuck holding unit provided below the second chuck, the chuck holding unit including an upper surface and suction grooves annularly formed on the upper surface of the chuck holding unit, the suction grooves configured to vacuum-suck the second chuck to draw and hold the second chuck.
    Type: Application
    Filed: January 24, 2014
    Publication date: July 31, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Shintaro SUGIHARA, Naoto YOSHITAKA, Shigenori KITAHARA, Keizo HIROSE
  • Publication number: 20130327463
    Abstract: Provided is a method of bonding substrates having a same planar shape, which includes: bonding a first substrate adsorbed to a lower surface of a first holding member and a second substrate adsorbed to an upper surface of a second holding member that is disposed below the first holding member; and determining whether a bonding position of the first substrate and the second substrate is acceptable by measuring an outer diameter of an overlapped substrate obtained by bonding the first substrate and the second substrate, wherein the determining decides that, when the measurement result is less than a predetermined threshold value, the bonding position of the first substrate and the second substrate is normal, and when the measurement result is equal to or greater than the predetermined threshold value, the bonding position of the first substrate and the second substrate is abnormal.
    Type: Application
    Filed: February 27, 2012
    Publication date: December 12, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Shigenori Kitahara, Keizo Hirose
  • Patent number: 8080126
    Abstract: In the plasma processing apparatus of the present invention, a first electrode for connecting a high frequency electric power source in a chamber is arranged to be opposed to a second electrode. A substrate (W) to be processed is placed between the electrodes. There is provided a harmonic absorbing member for being able to absorb harmonics of the high frequency electric power source so as to come in contact with a peripheral portion or circumference of a face of the first electrode 21, which is opposite the second electrode. The harmonic absorbing member absorbs the reflected harmonic before the harmonic returns to the high frequency electric power source. By absorbing the harmonic in this manner, the standing wave due to the harmonic will be effectively prevented from being generated, and the density of plasma is made even.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: December 20, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Akira Koshiishi, Keizo Hirose
  • Publication number: 20100326601
    Abstract: In the plasma processing apparatus of the present invention, a first electrode (21) for connecting a high frequency electric power source (40) in a chamber is arranged to be opposed to a second electrode (5). A substrate (W) to be processed is placed between the electrodes. There is provided a harmonic absorbing member (51) for being able to absorb harmonics of the high frequency electric power source (40) so as to come in contact with a peripheral portion or circumference of a face of the first electrode 21, which is opposite the second electrode (5). The harmonic absorbing member absorbs the reflected harmonic before the harmonic returns to the high frequency electric power source. By absorbing the harmonic in this manner, the standing wave due to the harmonic will be effectively prevented from being generated, and the density of plasma is made even.
    Type: Application
    Filed: September 10, 2010
    Publication date: December 30, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Akira Koshiishi, Keizo Hirose
  • Patent number: 7537672
    Abstract: In the plasma processing apparatus of the present invention, a first electrode (21) for connecting a high frequency electric power source (40) in a chamber is arranged to be opposed to a second electrode (5). A substrate (W) to be processed is placed between the electrodes. There is provided a harmonic absorbing member (51) for being able to absorb harmonics of the high frequency electric power source (40) so as to come in contact with a peripheral portion or circumference of a face of the first electrode 21, which is opposite the second electrode (5). The harmonic absorbing member absorbs the reflected harmonic before the harmonic returns to the high frequency electric power source. By absorbing the harmonic in this manner, the standing wave due to the harmonic will be effectively prevented from being generated, and the density of plasma is made even.
    Type: Grant
    Filed: April 27, 2000
    Date of Patent: May 26, 2009
    Assignee: Tokyo Electron Limited
    Inventors: Akira Koshiishi, Keizo Hirose
  • Publication number: 20080308041
    Abstract: In the plasma processing apparatus of the present invention, a first electrode for connecting a high frequency electric power source in a chamber is arranged to be opposed to a second electrode. A substrate (W) to be processed is placed between the electrodes. There is provided a harmonic absorbing member for being able to absorb harmonics of the high frequency electric power source so as to come in contact with a peripheral portion or circumference of a face of the first electrode 21, which is opposite the second electrode. The harmonic absorbing member absorbs the reflected harmonic before the harmonic returns to the high frequency electric power source. By absorbing the harmonic in this manner, the standing wave due to the harmonic will be effectively prevented from being generated, and the density of plasma is made even.
    Type: Application
    Filed: August 21, 2008
    Publication date: December 18, 2008
    Inventors: Akira KOSHIISHI, Keizo Hirose
  • Publication number: 20080305408
    Abstract: An aperture mask according to an embodiment of the present invention is an aperture mask for charged beam lithography, and includes: a mask substrate having a first semiconductor layer, an insulating film formed on the first semiconductor layer, and a second semiconductor layer formed on the insulating film, and provided with an aperture which penetrates the first semiconductor layer, the insulating film, and the second semiconductor layer; and a conductive layer which coats a surface of the mask substrate and a side wall surface of the aperture formed in the mask substrate, and which coats an exposed surface of the insulating film exposed to the side wall surface of the aperture.
    Type: Application
    Filed: June 6, 2007
    Publication date: December 11, 2008
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Keizo HIROSE
  • Patent number: 7364626
    Abstract: Substrate cleaning apparatus and method capable of preventing adhesion of particles to a substrate irrespective of being hydrophilic or hydrophobic are provided. Although a cleaning liquid ejected from a two-fluid nozzle 36 rebounds from a cup CP and scatters in the form of mist toward the center side of a wafer W, a rinsing liquid is supplied from a rinse nozzle 35 to form a water film 51 on the wafer W. Owing to the presence of the water film 51, the surface of the wafer W is protected from adhesion of particles contained in the mist. It is possible to prevent the particles in the mist from adhering to the wafer W and also possible to prevent a bad influence on the wafer W.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: April 29, 2008
    Assignee: Tokyo Electron Limited
    Inventors: Keizo Hirose, Kenji Sekiguchi
  • Publication number: 20070148985
    Abstract: A porous low-k film, a sacrificial film that can be dissolved in a pure water, an antireflection film and a resist film are successively formed on a dielectric film on a wafer and subsequently exposing the resist film to light in a prescribed pattern and developing the resist film so as to form a prescribed circuit pattern in the resist film. Then, the wafer W is etched so as to form a via hole in the porous low-k film, followed by processing the wafer with a hydrogen peroxide solution so as to denature the resist film. Further, the sacrificial film is dissolved in a pure water so as to strip the resist film and the antireflection film from the water. As a result, a via hole excellent in the accuracy of the shape is formed without doing damage to the dielectric film.
    Type: Application
    Filed: January 3, 2007
    Publication date: June 28, 2007
    Inventors: Nobutaka Mizutani, Fitrianto ., Isao Tsukagoshi, Keizo Hirose, Satohiko Hoshino
  • Patent number: 7176142
    Abstract: A porous low-k film, a sacrificial film that can be dissolved in a pure water, an antireflection film and a resist film are successively formed on a dielectric film on a wafer and subsequently exposing the resist film to light in a prescribed pattern and developing the resist film so as to form a prescribed circuit pattern in the resist film. Then, the wafer W is etched so as to form a via hole in the porous low-k film, followed by processing the wafer with a hydrogen peroxide solution so as to denature the resist film. Further, the sacrificial film is dissolved in a pure water so as to strip the resist film and the antireflection film from the water. As a result, a via hole excellent in the accuracy of the shape is formed without doing damage to the dielectric film.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: February 13, 2007
    Assignee: Tokyo Electron Limited
    Inventors: Nobutaka Mizutani, Fitrianto, Isao Tsukagoshi, Keizo Hirose, Satohiko Hoshino
  • Patent number: 7010826
    Abstract: A substrate cleaning tool having little particle sticking to the tool and a substrate cleaning apparatus having the substrate cleaning tool are provided. The substrate cleaning tool 23 has a plurality of thready brush members 46 in a bundle. The brush members 46 are capable of passing cleaning liquid through and ejecting the cleaning liquid through respective surfaces of the members 46. In operation, the substrate cleaning tool 23 is brought into contact with a substrate W in their relative movement in order to clean the substrate W. As the cleaning liquid is ejected from the surfaces of the brash members 46, particles are washed away from the surfaces of the brash members 46. Consequently, it is possible to eliminate a possibility that the particles etc. are transferred to the substrate W.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: March 14, 2006
    Assignee: Tokyo Electron Limited
    Inventors: Keizo Hirose, Kenji Sekiguchi
  • Publication number: 20050061445
    Abstract: In the plasma processing apparatus of the present invention, a first electrode (21) for connecting a high frequency electric power source (40) in a chamber is arranged to be opposed to a second electrode (5). A substrate (W) to be processed is placed between the electrodes. There is provided a harmonic absorbing member (51) for being able to absorb harmonics of the high frequency electric power source (40) so as to come in contact with a peripheral portion or circumference of a face of the first electrode 21, which is opposite the second electrode (5). The harmonic absorbing member absorbs the reflected harmonic before the harmonic returns to the high frequency electric power source. By absorbing the harmonic in this manner, the standing wave due to the harmonic will be effectively prevented from being generated, and the density of plasma is made even.
    Type: Application
    Filed: November 10, 2004
    Publication date: March 24, 2005
    Applicant: Tokyo Electron Limited
    Inventors: Akira Koshiishi, Keizo Hirose
  • Publication number: 20040002214
    Abstract: A porous low-k film, a sacrificial film that can be dissolved in a pure water, an antireflection film and a resist film are successively formed on a dielectric film on a wafer and subsequently exposing the resist film to light in a prescribed pattern and developing the resist film so as to form a prescribed circuit pattern in the resist film. Then, the wafer W is etched so as to form a via hole in the porous low-k film, followed by processing the wafer with a hydrogen peroxide solution so as to denature the resist film. Further, the sacrificial film is dissolved in a pure water so as to strip the resist film and the antireflection film from the water. As a result, a via hole excellent in the accuracy of the shape is formed without doing damage to the dielectric film.
    Type: Application
    Filed: June 6, 2003
    Publication date: January 1, 2004
    Inventors: Nobutaka Mizutani, Fitrianto, Isao Tsukagoshi, Keizo Hirose, Satohiko Hoshino
  • Publication number: 20030079764
    Abstract: Substrate cleaning apparatus and method capable of preventing adhesion of particles to a substrate irrespective of being hydrophilic or hydrophobic are provided. Although a cleaning liquid ejected from a two-fluid nozzle 36 rebounds from a cup CP and scatters in the form of mist toward the center side of a wafer W, a rinsing liquid is supplied from a rinse nozzle 35 to form a water film 51 on the wafer W. Owing to the presence of the water film 51, the surface of the wafer W is protected from adhesion of particles contained in the mist. It is possible to prevent the particles in the mist from adhering to the wafer W and also possible to prevent a bad influence on the wafer W.
    Type: Application
    Filed: November 1, 2002
    Publication date: May 1, 2003
    Inventors: Keizo Hirose, Kenji Sekiguchi
  • Patent number: 6554010
    Abstract: In a cleaning apparatus for substrates, such as semiconductor wafers, a permeable core member 68 made of a synthetic resin is supplied with distilled water from a distilled water supply path 60 within a head portion 66 of a cleaning tool 24. A planar portion 72 is provided on the lower surface of the core member 68 and a porous resin sheet 69 is attached to the outer surface of the core member 68, to cover it. The cleaning tool 24 is provided with an air bearing cylinder 30 that imparts a vertical driving force to a rod 31 that presses against the surface of a wafer W which is being rotated, and the distilled water supply path 60 is provided within the rod 31. The distilled water supplied from the distilled water supply path 60 permeates through the core member 68 and the porous resin sheet 69 and is sent out of the head 66 so that a flowing film of distilled water is formed on the surface of the wafer W. Thus contamination and damage of the substrate is prevented and the shape of the head is not destroyed.
    Type: Grant
    Filed: July 26, 2000
    Date of Patent: April 29, 2003
    Assignee: Tokyo Electron Limited
    Inventors: Keizo Hirose, Kenji Sekiguchi, Tomohide Inoue, Takanori Miyazaki, Kinya Ueno
  • Patent number: 6544380
    Abstract: An apparatus for treating a substrate which includes a chamber and an opening formed in the chamber allowing the substrate to be conveyed into the chamber or taken out thereof. The chamber, also, includes a detachable baffle plate that fits around an electrode. For treatment to commence, the substrate is placed on the electrode and the chamber is exhausted of or supplied with gases. The electrode is then vertically lifted together with the baffle plate and the baffle plate is moved either to a position that is higher in level than an upper end of the opening of the chamber or to a position that is lower in level than a lower end of the opening of the chamber. This allows the baffle plate to shield a region near the opening of the chamber from a treatment region and allows reaction products to be adhered to the baffle plate.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: April 8, 2003
    Assignee: Tokyo Electron Limited
    Inventors: Masayuki Tomoyasu, Akira Koshiishi, Kosuke Imafuku, Shosuke Endo, Kazuhiro Tahara, Yukio Naito, Kazuya Nagaseki, Keizo Hirose, Mitsuaki Komino, Hiroto Takenaka, Hiroshi Nishikawa, Yoshio Sakamoto
  • Patent number: 6431258
    Abstract: A process solution supplying mechanism for supplying a process solution to a wafer, comprises a source for containing the process solution, a pipe for introducing the process solution from the source to the wafer, a process solution supply driving system for supplying the process solution from the source to the wafer, and a process solution supplying/stopping mechanism for carrying out apply and stop of the process solution, wherein the pipe and the process solution supply driving system are provided separately and the process solution supplying/stopping mechanism is provided to a portion other than the pipe.
    Type: Grant
    Filed: November 9, 2000
    Date of Patent: August 13, 2002
    Assignee: Tokyo Electron Limited
    Inventors: Nobuo Konishi, Keizo Hirose