Patents by Inventor Ken K. Lai

Ken K. Lai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7605083
    Abstract: Embodiments of the invention provide methods for depositing tungsten materials. In one embodiment, a method for forming a composite tungsten film is provided which includes positioning a substrate within a process chamber, forming a tungsten nucleation layer on the substrate by subsequently exposing the substrate to a tungsten precursor and a reducing gas containing hydrogen during a cyclic deposition process, and forming a tungsten bulk layer during a plasma-enhanced chemical vapor deposition (PE-CVD) process. The PE-CVD process includes exposing the substrate to a deposition gas containing the tungsten precursor while depositing the tungsten bulk layer over the tungsten nucleation layer. In some example, the tungsten nucleation layer has a thickness of less than about 100 ?, such as about 15 ?. In other examples, a carrier gas containing hydrogen is constantly flowed into the process chamber during the cyclic deposition process.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: October 20, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Ken K. Lai, Jeong Soo Byun, Frederick C. Wu, Ramanujapuran A. Srinivas, Avgerinos Gelatos, Mei Chang, Moris Kori, Ashok K. Sinha, Hua Chung, Hongbin Fang, Alfred W. Mak, Michael X. Yang, Ming Xi
  • Publication number: 20080227291
    Abstract: Embodiments of the invention provide methods for depositing tungsten materials. In one embodiment, a method for forming a composite tungsten film is provided which includes positioning a substrate within a process chamber, forming a tungsten nucleation layer on the substrate by subsequently exposing the substrate to a tungsten precursor and a reducing gas containing hydrogen during a cyclic deposition process, and forming a tungsten bulk layer during a plasma-enhanced chemical vapor deposition (PE-CVD) process. The PE-CVD process includes exposing the substrate to a deposition gas containing the tungsten precursor while depositing the tungsten bulk layer over the tungsten nucleation layer. In some example, the tungsten nucleation layer has a thickness of less than about 100 ?, such as about 15 ?. In other examples, a carrier gas containing hydrogen is constantly flowed into the process chamber during the cyclic deposition process.
    Type: Application
    Filed: May 28, 2008
    Publication date: September 18, 2008
    Inventors: KEN K. LAI, Jeong Soo Byun, Frederick C. Wu, Ramanujapuran A. Srinivas, Avgerinos Gelatos, Mei Chang, Moris Kori, Ashok K. Sinha, Hua Chung, Hongbin Fang, Alfred W. Mak, Michael X. Yang, Ming Xi
  • Patent number: 7384867
    Abstract: Methods for the deposition of tungsten films are provided. The methods include depositing a nucleation layer by alternatively adsorbing a tungsten precursor and a reducing gas on a substrate, and depositing a bulk layer of tungsten over the nucleation layer.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: June 10, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Ken K. Lai, Jeong Soo Byun, Frederick C. Wu, Ramanujapuran A. Srinivas, Avgerinos Gelatos, Mei Chang, Moris Kori, Ashok K. Sinha, Hua Chung, Hongbin Fang, Alfred W. Mak, Michael X. Yang, Ming Xi
  • Patent number: 6939804
    Abstract: Methods for the deposition of tungsten films are provided. The methods include depositing a nucleation layer by alternatively adsorbing a tungsten precursor and a reducing gas on a substrate, and depositing a bulk layer of tungsten over the nucleation layer.
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: September 6, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Ken K. Lai, Jeong Soo Byun, Frederick C. Wu, Ramanujapuran A. Srinivas, Avgerinos Gelatos, Mei Chang, Moris Kori, Ashok K. Sinha, Hua Chung, Hongbin Fang, Alfred W. Mak, Michael X. Yang, Ming Xi
  • Publication number: 20040014315
    Abstract: Methods for the deposition of tungsten films are provided. The methods include depositing a nucleation layer by alternatively adsorbing a tungsten precursor and a reducing gas on a substrate, and depositing a bulk layer of tungsten over the nucleation layer.
    Type: Application
    Filed: November 18, 2002
    Publication date: January 22, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Ken K. Lai, Jeong Soo Byun, Frederick C. Wu, Ramanujapuran A. Srinivas, Avgerinos Gelatos, Mei Chang, Moris Kori, Ashok K. Sinha, Hua Chung, Hongbin Fang, Alfred W. Mak, Michael X. Yang, Ming Xi
  • Publication number: 20040013803
    Abstract: Methods of depositing titanium nitride (TiN) films on a substrate are disclosed. The titanium nitride (TiN) films may be formed using a cyclical deposition process by alternately adsorbing a titanium-containing precursor and a NH3 gas on the substrate. The titanium-containing precursor and the NH3 gas react to form the titanium nitride (TiN) layer on the substrate. The titanium nitride (TiN) films are compatible with integrated circuit fabrication processes. In one integrated circuit fabrication process, an interconnect structure is fabricated. The titanium nitride films may also be used as an electrode of a three-dimensional capacitor structure such as for example, trench capacitors and crown capacitors.
    Type: Application
    Filed: December 16, 2002
    Publication date: January 22, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Hua Chung, Hongbin Fang, Ken K. Lai, Jeong Soo Byun, Alfred W. Mak, Michael X. Yang, Ming Xi, Moris Kori, Xinliang Lu, Ping Jian
  • Patent number: 6328808
    Abstract: An alignment mechanism for aligning a substrate on a support member in a process chamber includes a set of guide pins extending from the upper surface of the support member equally spaced about the periphery thereof and spaced to receive a substrate therebetween and align a shadow ring thereover. The inner surfaces of the guide pins are slanted outwardly to form an inverted funnel for receiving and aligning the substrate on the support member. An annular gas groove in the upper surface of the support member provides communication for a supply of purge gas and directs the gas about the peripheral edge of the substrate. The guide pins which extend partially over the gas groove include slots therein that provide fluid communication through the guide pins from the gas groove to the peripheral edge of the substrate.
    Type: Grant
    Filed: April 5, 2000
    Date of Patent: December 11, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth Tsai, Joseph Yudovsky, Steve Ghanayem, Ken K. Lai, Patricia Liu, Toshiyuki Nakagawa, Maitreyee Mahajani
  • Patent number: 6186092
    Abstract: An alignment mechanism for aligning a substrate on a support member in a process chamber includes a set of guide pins extending from the upper surface of the support member equally spaced about the periphery thereof and spaced to receive a substrate therebetween and align a shadow ring thereover. The inner surfaces of the guide pins are slanted outwardly to form an inverted funnel for receiving and aligning the substrate on the support member. An annular gas groove in the upper surface of the support member provides communication for a supply of purge gas and directs the gas about the peripheral edge of the substrate. The guide pins which extend partially over the gas groove include slots therein that provide fluid communication through the guide pins from the gas groove to the peripheral edge of the substrate.
    Type: Grant
    Filed: August 19, 1997
    Date of Patent: February 13, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth Tsai, Joseph Yudovsky, Steve Ghanayem, Ken K. Lai, Patricia Liu, Toshiyuki Nakagawa, Maitreyee Mahajani