Patents by Inventor Kendall S. Fruchey

Kendall S. Fruchey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230212468
    Abstract: Provided herein are molecular sieve membranes for separating hydrocarbons of a lube feed stock into a permeate and a retentate based on molecular shape. The molecular sieve membranes comprise one or more layers of size-selective catalyst and a porous support comprising a plurality of diffusing gaps. Each layer of size-selective catalyst has a plurality of perpendicular membrane channels and a plurality of opening pores. The porous support is in fluidic communication with the plurality of opening pores to provide a fluidic pathway between the perpendicular membrane channels and the diffusing gaps. Also provided are processes for separating n-paraffins from other hydrocarbons in a lube feed stock using the present molecular sieve membranes.
    Type: Application
    Filed: March 29, 2021
    Publication date: July 6, 2023
    Applicant: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: James W. Gleeson, Benjamin S. Umansky, Kendall S. Fruchey
  • Patent number: 11198825
    Abstract: Systems and methods are provided to allow for characterization of feeds, intermediate effluents, and/or products during lubricant base stock production. More generally, the systems and methods can allow for characterization of aromatics in various types of hydroprocessed intermediate effluents and/or products. In some aspects, the characterization can include measuring a fluorescence excitation-emission matrix spectrum for a sample, and then generating a representation of the spectrum by fitting the measured spectrum to a linear combination of spectra corresponding to compounds or compound classes. As the hydroprocessing process continues, additional measured spectra and comparing the fit quality of the representation to the subsequently measured spectra. When the fit quality falls below a threshold value, the loss in fit quality indicates a change in the number and/or distribution of aromatics in the sample.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: December 14, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: David L. Perkins, Jason M. McMullan, Kendall S. Fruchey
  • Patent number: 11186787
    Abstract: A base stock having at least 90 wt. % saturates, an amount and distribution of aromatics, as determined by ultra violet (UV) spectroscopy, including an absorptivity between 280 and 320 nm of less than 0.015 l/gm-cm, a viscosity index (VI) from 80 to 120, and having a cycloparaffin performance ratio greater than 1.05 and a kinematic viscosity at 100° C. between 4 and 6 cSt. A base stock having at least 90 wt. % saturates, an amount and distribution of aromatics, as determined by UV spectroscopy, including an absorptivity between 280 and 320 nm of less than 0.020 l/gm-cm, a viscosity index (VI) from 80 to 120, and having a cycloparaffin performance ratio greater than 1.05 and a kinematic viscosity at 100° C. between 10 and 14 cSt. A lubricating oil having the base stock as a major component, and one or more additives as a minor component. Methods for improving oxidation performance and low temperature performance of formulated lubricant compositions through the compositionally advantaged base stock.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: November 30, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Rugved P. Pathare, Lisa I-Ching Yeh, Yogi V. Shukla, Charles L. Baker, Jr., Bryan E. Hagee, Debra A. Sysyn, Kendall S. Fruchey
  • Patent number: 11060040
    Abstract: Systems and methods are provided for block operation during lubricant and/or fuels production from deasphalted oil. During “block” operation, a deasphalted oil and/or the hydroprocessed effluent from an initial processing stage can be split into a plurality of fractions. The fractions can correspond, for example, to feed fractions suitable for forming a light neutral fraction, a heavy neutral fraction, and a bright stock fraction, or the plurality of fractions can correspond to any other convenient split into separate fractions. The plurality of separate fractions can then be processed separately in the process train (or in the sweet portion of the process train) for forming fuels and/or lubricant base stocks. This can allow for formation of unexpected base stock compositions.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: July 13, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Lisa I-Ching Yeh, Yogi V. Shukla, Pilanda Watkins-Curry, Camden N. Henderson, Kendall S. Fruchey, Michael B. Carroll, Adrienne R. Diebold
  • Publication number: 20210115344
    Abstract: Systems and methods are provided to allow for characterization of feeds, intermediate effluents, and/or products during lubricant base stock production. More generally, the systems and methods can allow for characterization of aromatics in various types of hydroprocessed intermediate effluents and/or products. In some aspects, the characterization can include measuring a fluorescence excitation-emission matrix spectrum for a sample, and then generating a representation of the spectrum by fitting the measured spectrum to a linear combination of spectra corresponding to compounds or compound classes. As the hydroprocessing process continues, additional measured spectra and comparing the fit quality of the representation to the subsequently measured spectra. When the fit quality falls below a threshold value, the loss in fit quality indicates a change in the number and/or distribution of aromatics in the sample.
    Type: Application
    Filed: October 5, 2020
    Publication date: April 22, 2021
    Inventors: David L. Perkins, Jason M. McMullan, Kendall S. Fruchey
  • Patent number: 10947464
    Abstract: Systems and methods are provided for integration of use deasphalted resid as a feed for fuels and/or lubricant base stock production with use of the corresponding deasphalter rock for gasification to generate hydrogen and/or fuel for the fuels and/or lubricant production process. The integration can include using hydrogen generated during gasification as a fuel to provide heat for solvent processing and/or using the hydrogen for hydroprocessing of deasphalted oil.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: March 16, 2021
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Kendall S. Fruchey, Sara K. Green, Anjaneya S. Kovvali, Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl
  • Patent number: 10920159
    Abstract: A base stock having at least 90 wt. % saturates, an amount and distribution of aromatics, as determined by ultra violet (UV) spectroscopy, including an absorptivity between 280 and 320 nm of less than 0.015 l/gm-cm, a viscosity index (VI) from 80 to 120, and having a cycloparaffin performance ratio greater than 1.05 and a kinematic viscosity at 100° C. between 4 and 6 cSt. A base stock having at least 90 wt. % saturates, an amount and distribution of aromatics, as determined by UV spectroscopy, including an absorptivity between 280 and 320 nm of less than 0.020 l/gm-cm, a viscosity index (VI) from 80 to 120, and having a cycloparaffin performance ratio greater than 1.05 and a kinematic viscosity at 100° C. between 10 and 14 cSt. A lubricating oil having the base stock as a major component, and one or more additives as a minor component. Methods for improving oxidation performance and low temperature performance of formulated lubricant compositions through the compositionally advantaged base stock.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: February 16, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Rugved P. Pathare, Lisa I-Ching Yeh, Yogi V. Shukla, Charles L. Baker, Jr., Bryan E. Hagee, Debra A. Sysyn, Kendall S. Fruchey
  • Patent number: 10865352
    Abstract: Adsorbents for aromatic adsorption are used to improve one or more properties of base stocks derived from deasphalted oil fractions. The adsorbents can allow for removal of polynuclear aromatics from an intermediate effluent or final effluent during base stock production. Removal of polynuclear aromatics can be beneficial for improving the color of heavy neutral base stocks and/or reducing the turbidity of bright stocks.
    Type: Grant
    Filed: February 18, 2019
    Date of Patent: December 15, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: William R. Gunther, Kendall S. Fruchey, Vinit Choudhary, Adrienne R. Diebold, Jason M. McMullan
  • Patent number: 10808185
    Abstract: Methods are provided for forming lubricant base stocks from feeds such as vacuum resid or other 510° C.+ feeds. A feed can be deasphalted and then catalytically and/or solvent processed to form lubricant base stocks, including bright stocks that are resistant to haze formation.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: October 20, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Timothy L. Hilbert, Michael B. Carroll, Ajit B. Dandekar, Sara L. Yohe, Stephen H. Brown, Tracie L. Owens, April D. Ross, Eric B. Senzer, Steven Pyl, Rugved P. Pathare, Lisa I-Ching Yeh, Bradley R. Fingland, Keith K. Aldous, Anjaneya S. Kovvali, Kendall S. Fruchey, Sara K. Green, Camden N. Henderson
  • Patent number: 10752849
    Abstract: Systems and methods are provided for upgrading catalytic slurry oil. The upgrading can be performed by deasphalting the catalytic slurry oil to form a deasphalted oil and a residual or rock fraction. The deasphalted oil can then be hydroprocessed to form an upgraded effluent that includes fuels boiling range products.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: August 25, 2020
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Stephen H. Brown, Brian A. Cunningham, Randolph J. Smiley, Samia Ilias, Keith K. Aldous, Sara K. Green, Patrick L. Hanks, Kendall S. Fruchey
  • Patent number: 10655077
    Abstract: Systems and methods are provided for using a three-product deasphalter to produce advantageous combinations of deasphalted oil, resin, and rock. The desaphalted oil, resin, and rock can then be further combined, optionally with other vacuum gas oil fractions produced during the distillation that generated the feed to the three-product deasphalter, to produce a product slate of improved quality while also maintaining the quality of the resulting asphalt product and reducing or minimizing the amount of lower value products generated. The additional “resin” product from the three product deasphalter can be generated by sequential deasphalting, by using a resin settler to separate resin from the deasphalted oil, or by any other convenient method.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: May 19, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Keith K. Aldous, Kamal Boussad, Kendall S. Fruchey, Sara K. Green
  • Patent number: 10647925
    Abstract: Fuels and/or fuel blending components can be formed from hydroprocessing of high lift deasphalted oil. The high lift deasphalting can correspond to solvent deasphalting to produce a yield of deasphalted oil of at least 50 wt %, or at least 65 wt %, or at least 75 wt %. The resulting fuels and/or fuel blending components formed by hydroprocessing of the deasphalted oil can have unexpectedly high naphthene content and/or density. Additionally or alternately, deasphalted oil generated from high lift deasphalting represents a disadvantaged feed that can be converted into a fuel and/or fuel blending components with unexpected compositions. Additionally or alternately, the resulting fuels and/or fuel blending components can have unexpectedly beneficial cold flow properties, such as cloud point, pour point, and/or freeze point.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: May 12, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Sheryl B. Rubin-Pitel, Kenneth Kar, Kendall S. Fruchey
  • Patent number: 10590360
    Abstract: Compositions are provided for lubricant base stocks produced from feeds such as vacuum resid or other 510° C.+ feeds. A feed can be deasphalted and then catalytically and/or solvent processed to form lubricant base stocks, including bright stocks that are resistant to haze formation.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: March 17, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Lisa I-Ching Yeh, Rugved P. Pathare, Eric B. Senzer, Camden N. Henderson, Tracie L. Owens, Kendall S. Fruchey, Timothy L. Hilbert, Michael B. Carroll, Debra A. Sysyn, Kathleen E. Edwards, Bryan E. Hagee
  • Patent number: 10550335
    Abstract: Deasphalter rock from high lift deasphalting can be combined with a flux to form a fuel oil blending component. The high lift deasphalting can correspond to solvent deasphalting to produce a yield of deasphalted oil of at least 50 wt %, or at least 65 wt %, or at least 75 wt %. The feed used for the solvent deasphalting can be a resid-containing feed. The resulting fuel oil blendstock made by fluxing of high lift deasphalter rock can have unexpectedly beneficial properties when used as a blendstock.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: February 4, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Sheryl B. Rubin-Pitel, Kenneth Kar, Kendall S. Fruchey
  • Publication number: 20200010772
    Abstract: Systems and methods are provided for producing lubricant basestocks having a reduced or minimized aromatics content. A first processing stage can perform an initial amount of hydrotreating and/or hydrocracking. A first separation stage can then be used to remove fuels boiling range (and lower boiling range) compounds. The remaining lubricant boiling range fraction can then be exposed under hydrocracking conditions to a USY catalyst including a supported noble metal, such as Pt and/or Pd. The USY catalyst can have a desirable combination of catalyst properties, such as a unit cell size of 24.30 or less (or 24.24 or less), a silica to alumina ratio of at least 50 (or at least 80), and an alpha value of 20 or less (or 10 or less). In some aspects, the effluent from the second (hydrocracking) stage can be dewaxed without further separation. In such aspects, a portion of the dewaxed effluent can be used as a recycle quench stream to cool the hydrocracking effluent prior to entering the dewaxing reactor.
    Type: Application
    Filed: September 17, 2019
    Publication date: January 9, 2020
    Inventors: Ajit B. Dandekar, Bradley R. Fingland, Kendall S. Fruchey, Scott J. Weigel
  • Publication number: 20190375997
    Abstract: A base stock having at least 90 wt. % saturates, an amount and distribution of aromatics, as determined by ultra violet (UV) spectroscopy, including an absorptivity between 280 and 320 nm of less than 0.015 l/gm-cm, a viscosity index (VI) from 80 to 120, and having a cycloparaffin performance ratio greater than 1.05 and a kinematic viscosity at 100° C. between 4 and 6 cSt. A base stock having at least 90 wt. % saturates, an amount and distribution of aromatics, as determined by UV spectroscopy, including an absorptivity between 280 and 320 nm of less than 0.020 l/gm-cm, a viscosity index (VI) from 80 to 120, and having a cycloparaffin performance ratio greater than 1.05 and a kinematic viscosity at 100° C. between 10 and 14 cSt. A lubricating oil having the base stock as a major component, and one or more additives as a minor component. Methods for improving oxidation performance and low temperature performance of formulated lubricant compositions through the compositionally advantaged base stock.
    Type: Application
    Filed: July 31, 2019
    Publication date: December 12, 2019
    Inventors: Rugved P. Pathare, Lisa I-Ching Yeh, Yogi V. Shukla, Charles L. Baker, JR., Bryan E. Hagee, Debra A. Sysyn, Kendall S. Fruchey
  • Publication number: 20190359898
    Abstract: Systems and methods are provided for block operation during lubricant and/or fuels production from deasphalted oil. During “block” operation, a deasphalted oil and/or the hydroprocessed effluent from an initial processing stage can be split into a plurality of fractions. The fractions can correspond, for example, to feed fractions suitable for forming a light neutral fraction, a heavy neutral fraction, and a bright stock fraction, or the plurality of fractions can correspond to any other convenient split into separate fractions. The plurality of separate fractions can then be processed separately in the process train (or in the sweet portion of the process train) for forming fuels and/or lubricant base stocks. This can allow for formation of unexpected base stock compositions.
    Type: Application
    Filed: August 1, 2019
    Publication date: November 28, 2019
    Inventors: Lisa I-Ching Yeh, Yogi V. Shukla, Pilanda Watkins-Curry, Camden N. Henderson, Kendall S. Fruchey, Michael B. Carroll, Adrienne R. Diebold
  • Publication number: 20190359906
    Abstract: A base stock having at least 90 wt. % saturates, an amount and distribution of aromatics, as determined by ultra violet (UV) spectroscopy, including an absorptivity between 280 and 320 nm of less than 0.015 l/gm-cm, a viscosity index (VI) from 80 to 120, and having a cycloparaffin performance ratio greater than 1.05 and a kinematic viscosity at 100° C. between 4 and 6 cSt. A base stock having at least 90 wt. % saturates, an amount and distribution of aromatics, as determined by UV spectroscopy, including an absorptivity between 280 and 320 nm of less than 0.020 l/gm-cm, a viscosity index (VI) from 80 to 120, and having a cycloparaffin performance ratio greater than 1.05 and a kinematic viscosity at 100° C. between 10 and 14 cSt. A lubricating oil having the base stock as a major component, and one or more additives as a minor component. Methods for improving oxidation performance and low temperature performance of formulated lubricant compositions through the compositionally advantaged base stock.
    Type: Application
    Filed: July 31, 2019
    Publication date: November 28, 2019
    Inventors: Rugved P. Pathare, Lisa I-Ching Yeh, Yogi V. Shukla, Charles L. Baker, JR., Bryan E. Hagee, Debra A. Sysyn, Kendall S. Fruchey
  • Patent number: 10457877
    Abstract: Systems and methods are provided for producing lubricant basestocks having a reduced or minimized aromatics content. A first processing stage can perform an initial amount of hydrotreating and/or hydrocracking. A first separation stage can then be used to remove fuels boiling range (and lower boiling range) compounds. The remaining lubricant boiling range fraction can then be exposed under hydrocracking conditions to a USY catalyst including a supported noble metal, such as Pt and/or Pd. The USY catalyst can have a desirable combination of catalyst properties, such as a unit cell size of 24.30 or less (or 24.24 or less), a silica to alumina ratio of at least 50 (or at least 80), and an alpha value of 20 or less (or 10 or less). In some aspects, the effluent from the second (hydrocracking) stage can be dewaxed without further separation. In such aspects, a portion of the dewaxed effluent can be used as a recycle quench stream to cool the hydrocracking effluent prior to entering the dewaxing reactor.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: October 29, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ajit B. Dandekar, Bradley R. Fingland, Kendall S. Fruchey, Scott J. Weigel
  • Patent number: 10414995
    Abstract: A base stock having at least 90 wt. % saturates, an amount and distribution of aromatics, as determined by ultra violet (UV) spectroscopy, including an absorptivity between 280 and 320 nm of less than 0.015 l/gm-cm, a viscosity index (VI) from 80 to 120, and having a cycloparaffin performance ratio greater than 1.05 and a kinematic viscosity at 100° C. between 4 and 6 cSt. A base stock having at least 90 wt. % saturates, an amount and distribution of aromatics, as determined by UV spectroscopy, including an absorptivity between 280 and 320 nm of less than 0.020 l/gm-cm, a viscosity index (VI) from 80 to 120, and having a cycloparaffin performance ratio greater than 1.05 and a kinematic viscosity at 100° C. between 10 and 14 cSt. A lubricating oil having the base stock as a major component, and one or more additives as a minor component. Methods for improving oxidation performance and low temperature performance of formulated lubricant compositions through the compositionally advantaged base stock.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: September 17, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Rugved P. Pathare, Lisa I-Ching Yeh, Yogi V. Shukla, Charles L. Baker, Jr., Bryan E. Hagee, Debra A. Sysyn, Kendall S. Fruchey