Patents by Inventor Kenji Sawai

Kenji Sawai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150024445
    Abstract: A method of producing a chemical product by continuous fermentation includes filtering a culture liquid of a microorganism(s) through a separation membrane; retaining unfiltered liquid in, or refluxing unfiltered liquid to, the culture liquid; adding a fermentation feedstock to the culture liquid; and recovering a product in the filtrate, wherein the fermentation feedstock contains pentose and hexose, and wherein the microorganism(s) is/are a microorganism(s) having a pathway in which pentose reductase and pentol dehydrogenase are used to metabolize pentose.
    Type: Application
    Filed: January 11, 2013
    Publication date: January 22, 2015
    Inventors: Shiomi Watanabe, Koji Kobayashi, Kyohei Isobe, Kenji Sawai, Kyungsu Na, Shingo Hiramatsu, Katsushige Yamada
  • Publication number: 20150010971
    Abstract: A method of producing a chemical product by continuous fermentation includes filtering a culture liquid of a microorganism(s) through a separation membrane; retaining unfiltered liquid in, or refluxing unfiltered liquid to, the culture liquid; adding a fermentation feedstock to the culture liquid; and recovering a product in the filtrate, wherein the fermentation feedstock contains pentose and hexose, and wherein the microorganism(s) has/have a pathway in which pentose isomerase is used to metabolize pentose.
    Type: Application
    Filed: January 11, 2013
    Publication date: January 8, 2015
    Inventors: Kyohei Isobe, Shiomi Watanabe, Koji Kobayashi, Kenji Sawai, Kyungsu Na, Shingo Hiramatsu, Katsushige Yamada
  • Publication number: 20140355018
    Abstract: An image forming apparatus includes a rotating fixing unit, a switching unit, and a control unit. The rotating fixing unit has a surface, the surface fixing a toner image on a recording medium by contacting the recording medium. The switching unit switches between transportation directions in which the recording sheet is transported such that an orientation of a predetermined side of the recording medium with respect to the fixing unit matches either an orientation corresponding to a first direction in which the central axis of the fixing unit extends or an orientation corresponding to a second direction that is perpendicular to the first direction. The control unit controls the switching unit such that the recording medium is transported in a direction corresponding to a smaller one of integration values obtained along the first direction and the second direction.
    Type: Application
    Filed: January 9, 2014
    Publication date: December 4, 2014
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Jota KOBAYASHI, Yasutaka GOTO, Koji OKABE, Yuki KUBOTA, Takayuki RYU, Kenji SAWAI
  • Publication number: 20140349354
    Abstract: A method produces a chemical product by continuous fermentation including filtering a culture liquid of a microorganism(s) through a separation membrane, retaining unfiltered liquid in, or refluxing unfiltered liquid to, the culture liquid, adding a fermentation feedstock to the culture liquid, and recovering a product in the filtrate, wherein the microorganism(s) is/are a microorganism(s) that undergo(es) catabolite repression, and the fermentation feedstock comprises hexose and pentose.
    Type: Application
    Filed: January 11, 2013
    Publication date: November 27, 2014
    Inventors: Koji Kobayashi, Shiomi Watanabe, Kyohei Isobe, Kenji Sawai, Kyungsu Na, Shingo Hiramatsu, Katsushige Yamada
  • Patent number: 8859260
    Abstract: A gene expressing cassette codes lactate dehydrogenase that is needed for prevention of deterioration in lactic acid yield and lactic acid production rate in continuous culture with simultaneous filtration of a yeast strain having a lactic acid-producing ability, which achieves high optical purity, high lactic acid yield and high lactic acid production rate simultaneously, a yeast strain having the cassette and a method of producing lactic acid by culturing the yeast strain. The lactate dehydrogenase-expressing cassette is a lactate dehydrogenase-expressing cassette, comprising a gene coding lactate dehydrogenase connected to a site downstream of a promoter, the promoter being a promoter of a gene showing a gene expression amount larger by 5 times or more than the average relative expression amount of all genes after 50 hours from start of culture in continuous culture with simultaneous filtration of a yeast strain having a lactic acid-producing ability.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: October 14, 2014
    Assignee: Toray Industries, Inc.
    Inventors: Kenji Sawai, Hideki Sawai
  • Patent number: 8822195
    Abstract: Highly productive D-lactic acid fermentation uses a transformant obtained by introducing into a host cell a polynucleotide encoding a polypeptide according to any one of the following (A) to (C) in such a manner that the polypeptide is expressed, which polypeptide has a D-lactate dehydrogenase activity higher than those of conventional polypeptides: (A) a polypeptide having the amino acid sequence shown in SEQ ID NO:1 or 2; (B) a polypeptide having the same amino acid sequence as shown in SEQ ID NO:1 or 2 except that one or several amino acids are substituted, deleted, inserted and/or added, which polypeptide has a D-lactate dehydrogenase activity; and (C) a polypeptide having an amino acid sequence which has a sequence identity of not less than 80% to the amino acid sequence shown in SEQ ID NO:1 or 2, which polypeptide has a D-lactate dehydrogenase activity.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: September 2, 2014
    Assignee: Toray Industries, Inc.
    Inventors: Kenji Sawai, Kazumi Suda, Hideki Sawai, Katsushige Yamada, Junya Yamagishi
  • Patent number: 8759045
    Abstract: A method of producing lactic acid by separating lactic acid produced in a culture solution by microbial fermentation, comprising: a step (A) of filtering the culture solution through a nano-filtration membrane; and a step (B) of distilling a lactic-acid-containing solution produced in step (A) under a pressure of 1 Pa to atmospheric pressure (inclusive) at a temperature of 25 to 200° C. (inclusive) to recover lactic acid.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: June 24, 2014
    Assignee: Toray Industries, Inc.
    Inventors: Masateru Ito, Shin-ichi Minegishi, Eri Shimizu, Kenji Sawai, Yohito Ito, Hideki Sawai, Katsushige Yamada
  • Publication number: 20140105656
    Abstract: A fixing device includes an endless belt that fixes toner onto a recording medium by heat, a heating member in the form of substantially a sheet that has flexibility and that heats the belt from inside a space enclosed by the belt, and a stationary member including a curved surface that is in contact with the heating member, a fixed area in the curved surface in which the heating member is fixed to the stationary member, and a non-fixed area in the curved surface in which the heating member is not fixed to the stationary member, the stationary member having a coefficient of linear expansion different from that of the heating member. The belt is wound around the stationary member via a layer that includes the heating member, and rigidities of the belt and the heating member are lower than a rigidity of the stationary member.
    Type: Application
    Filed: June 7, 2013
    Publication date: April 17, 2014
    Inventors: Mitsuhiro MATSUMOTO, Yasuhiro UEHARA, Kazuyoshi ITO, Taketoshi HIGASHI, Kenji SAWAI
  • Publication number: 20140004576
    Abstract: A method of producing cadaverine is more efficient and at a higher yield than production methods by the conventional fermentation methods. The method includes culturing coryneform bacterium/bacteria having a resistance to a pH of 5.5 or less. Preferably, the coryneform bacterium/bacteria has/have lysine decarboxylase activity and, preferably, the coryneform bacterium/bacteria has/have homoserine auxotrophy and/or a resistance to S-(2-aminoethyl)-L-cysteine.
    Type: Application
    Filed: December 8, 2011
    Publication date: January 2, 2014
    Applicant: Toray Industries, Inc.
    Inventors: Nanami Sasaki, Takashi Mimitsuka, Hideki Sawai, Kenji Sawai
  • Publication number: 20130323800
    Abstract: A method produces cadaverine more efficiently and at a higher yield than production methods by the conventional fermentation methods. The method includes culturing coryneform bacterium/bacteria having an ability to produce cadaverine and having a resistance to 2,2?-thiobis(ethylamine). Preferably, the coryneform bacterium/bacteria has/have lysine decarboxylase activity and, preferably, the coryneform bacterium/bacteria has/have homoserine auxotrophy and/or a resistance to S-(2-aminoethyl)-L-cysteine.
    Type: Application
    Filed: December 8, 2011
    Publication date: December 5, 2013
    Applicant: Toray Industries, Inc.
    Inventors: Nanami Sasaki, Takashi Mimitsuka, Hideki Sawai, Kenji Sawai
  • Publication number: 20130071888
    Abstract: A method of producing 1,5-pentanediamine includes culturing coryneform bacterium having a gene encoding lysine decarboxylase in its chromosome, which coryneform bacterium maintains lysine decarboxylase activity of not less than 50 mU/mg protein during culturing and the gene encoding lysine decarboxylase is linked downstream of a promoter that functions during the logarithmic growth phase.
    Type: Application
    Filed: April 11, 2011
    Publication date: March 21, 2013
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Kenji Sawai, Shiomi Watanabe, Takashi Mimitsuka, Hideki Sawai
  • Patent number: 8349597
    Abstract: A method of producing lactic acid by separating lactic acid produced in a culture solution by microbial fermentation, comprising: a step (A) of filtering the culture solution through a nano-filtration membrane; and a step (B) of distilling a lactic-acid-containing solution produced in step (A) under a pressure of 1 Pa to atmospheric pressure at a temperature of 25 to 200° C. to recover lactic acid.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: January 8, 2013
    Assignee: Toray Industries, Inc.
    Inventors: Masateru Ito, Shin-ichi Minegishi, Eri Shimizu, Kenji Sawai, Yohito Ito, Hideki Sawai, Katsushige Yamada
  • Patent number: 8334411
    Abstract: A method for producing a diamine includes purifying a diamine from an aqueous solution containing a diamine salt by adding an alkaline substance to the aqueous solution and then filtering the resulting solution by allowing the solution to pass through a nanofiltration membrane to remove the salt, thereby obtaining an aqueous diamine solution.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: December 18, 2012
    Assignee: Toray Industries, Inc.
    Inventors: Masateru Ito, Izumi Nakagawa, Koya Kato, Takashi Mimitsuka, Kenji Sawai, Shin-ichi Minegishi, Hideki Sawai, Katsushige Yamada
  • Publication number: 20120070871
    Abstract: Highly productive D-lactic acid fermentation uses a transformant obtained by introducing into a host cell a polynucleotide encoding a polypeptide according to any one of the following (A) to (C) in such a manner that the polypeptide is expressed, which polypeptide has a D-lactate dehydrogenase activity higher than those of conventional polypeptides: (A) a polypeptide having the amino acid sequence shown in SEQ ID NO:1 or 2; (B) a polypeptide having the same amino acid sequence as shown in SEQ ID NO:1 or 2 except that one or several amino acids are substituted, deleted, inserted and/or added, which polypeptide has a D-lactate dehydrogenase activity; and (C) a polypeptide having an amino acid sequence which has a sequence identity of not less than 80% to the amino acid sequence shown in SEQ ID NO:1 or 2, which polypeptide has a D-lactate dehydrogenase activity.
    Type: Application
    Filed: June 2, 2010
    Publication date: March 22, 2012
    Applicant: Toray Industries, Inc.
    Inventors: Kenji Sawai, Kazumi Suda, Hideki Sawai, Katsushige Yamada, Junya Yamagishi
  • Patent number: 8071357
    Abstract: Yeast includes an introduced gene coding a Homo sapiens- or frog-derived L-lactate dehydrogenase. It is possible to produce lactic acid, which has a variety of applications, efficiently and more cost-effectively by using the yeast and the method of producing lactic acid by using the yeast.
    Type: Grant
    Filed: September 4, 2006
    Date of Patent: December 6, 2011
    Assignee: Toray Industries, Inc.
    Inventors: Hideki Sawai, Kenji Sawai, Tomonori Sonoki, Satoko Hatahira
  • Publication number: 20110263811
    Abstract: Lactic acid is obtained by a method including (A) a step of continuous fermentation wherein a fermentation culture medium of a microorganism having an ability of lactic acid fermentation is filtered through a porous membrane having an average pore size of not less than 0.01 ?m and less than 1 ?m with a transmembrane pressure difference within the range of 0.1 to 20 kPa, and the permeate is collected, while retaining the non-permeated liquid in or returning the non-permeated liquid to the culture, and adding a fermentation feedstock to the culture; (B) a step of filtering the permeate obtained in Step (A) through a nanofiltration membrane; and (C) a step of distilling the permeate obtained in Step (B) under a pressure of not less than 1 Pa and not more than atmospheric pressure, at 25° C. to 200° C. to recover lactic acid.
    Type: Application
    Filed: December 25, 2009
    Publication date: October 27, 2011
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Kenji Sawai, Hideki Sawai, Takashi Mimitsuka, Ito Masateru, Katsushige Yamada, Kenji Kawamura, Shin-ichi Minegishi, Izumi Nakagawa, Tatsuya Nagano
  • Publication number: 20110177551
    Abstract: To control flow velocity of a culture liquid inside a membrane separation tank without giving influences to culture conditions in the fermentation tank, and also suppress precipitation of microorganisms or culture cells so that the production efficiency of the chemical product can be improved, in a method for producing a chemical product including the steps of: cultivating microorganisms or culture cells in a fermentation tank; transferring a culture liquid from the fermentation tank to a membrane separation tank so as to filter the culture liquid through a separation membrane; and collecting a fermentation product from a filtration liquid as the chemical product while refluxing an unfiltered culture liquid that has not been filtered so as to be joined to the culture liquid on an upstream side of the membrane separation tank, one portion of the culture liquid to be transferred from the fermentation tank is allowed to bypass the membrane separation tank depending on a pressure at the culture liquid flow-in sid
    Type: Application
    Filed: September 16, 2009
    Publication date: July 21, 2011
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Takashi Mimitsuka, Kentaro Ishii, Ken Morita, Masashi Higasa, Kenji Sawai, Hideki Sawai, Katsushige Yamada, Shinichi Minegishi
  • Publication number: 20110004018
    Abstract: A method for producing a diamine includes purifying a diamine from an aqueous solution containing a diamine salt by adding an alkaline substance to the aqueous solution and then filtering the resulting solution by allowing the solution to pass through a nanofiltration membrane to remove the salt, thereby obtaining an aqueous diamine solution.
    Type: Application
    Filed: March 11, 2009
    Publication date: January 6, 2011
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Masateru Ito, Izumi Nakagawa, Koya Kato, Takashi Mimitsuka, Kenji Sawai, Shin-ichi Minegishi, Hideki Sawai, Katsushige Yamada
  • Publication number: 20100273225
    Abstract: A gene expressing cassette codes lactate dehydrogenase that is needed for prevention of deterioration in lactic acid yield and lactic acid production rate in continuous culture with simultaneous filtration of a yeast strain having a lactic acid-producing ability, which achieves high optical purity, high lactic acid yield and high lactic acid production rate simultaneously, a yeast strain having the cassette and a method of producing lactic acid by culturing the yeast strain. The lactate dehydrogenase-expressing cassette is a lactate dehydrogenase-expressing cassette, comprising a gene coding lactate dehydrogenase connected to a site downstream of a promoter, the promoter being a promoter of a gene showing a gene expression amount larger by 5 times or more than the average relative expression amount of all genes after 50 hours from start of culture in continuous culture with simultaneous filtration of a yeast strain having a lactic acid-producing ability.
    Type: Application
    Filed: December 5, 2008
    Publication date: October 28, 2010
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Kenji Sawai, Hideki Sawai
  • Publication number: 20100190222
    Abstract: Disclosed is a lactic acid production method by separating lactic acid produced in a culture solution by means of the fermentation culture of a microorganism. Specifically disclosed is a lactic acid production method, which comprises: a step (A) of filtering the culture solution through a nano-filtration membrane; and a step (B) of distilling a lactic-acid-containing solution produced in the step (A) under a pressure ranging from 1 Pa to the atmospheric pressure (inclusive) at a temperature ranging from 25 to 200° C. (inclusive) to collect lactic acid. The method can effectively remove an inorganic salt dissolved in a fermentation culture solution or contained in the fermentation culture solution in the form of a poorly soluble solid material by a simple manipulation, enables to prevent the racemization or oligomerization of lactic acid during the process of producing lactic acid, and therefore can produce lactic acid in a high yield.
    Type: Application
    Filed: June 18, 2008
    Publication date: July 29, 2010
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Masateru Ito, Shin-ichi Minegishi, Eri Shimizu, Kenji Sawai, Yohito Ito, Hideki Sawai, Katsushige Yamada