Patents by Inventor Kenji Yasuda

Kenji Yasuda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11454281
    Abstract: Disclosed herein is a sliding member for an internal-combustion engine of an automobile or the like. The sliding member has excellent sliding properties due to high oleophilicity of its sliding surface achieved by adjusting the surface texture of a resin layer forming the sliding surface, which makes it possible to effectively prevent wear or seizure of the sliding member and a counterpart sliding member thereof. The sliding member includes a resin layer provided on a surface of a base material, in which the resin layer has a surface roughness of 1.05 or more, preferably 1.07 or more. The mean spacing (s) between local peaks of the resin layer may be in the range of 2 ?m or more but 12 ?m or less, but may be preferably in the range of 2 ?m or more but 10 ?m or less. Further, the mean height (Rc) of the resin layer may be in the range of 0.5 ?m or more but 5.0 ?m or less, but may be preferably in the range of 0.5 ?m or more but 3.0 ?m or less.
    Type: Grant
    Filed: December 25, 2018
    Date of Patent: September 27, 2022
    Assignee: DAIDO METAL COMPANY LTD.
    Inventors: Kenji Nimura, Erina Yasuda
  • Publication number: 20220276250
    Abstract: The present disclosure provides a technique for separating and identifying an abnormal cell in a cell sample derived from a subject. The present disclosure provides a method for analyzing cells using a cell analyzer by utilizing the functions, either alone or in combination, of the cell analyzer, said cell analyzer having a function of continuously concentrating cells, a function of successively arranging the cells in a specific region of a flow channel continuously, a function of simultaneously recognizing the shape of each cell, in a single cell unit on an image base, in the bright field and the shape of fluorescence, and a function of separating and purifying the cells having been recognized on the basis of the shape thereof obtained by correcting the aforesaid shape in accordance with the flow rate of the cells and the light emission data of the fluorescence.
    Type: Application
    Filed: August 20, 2020
    Publication date: September 1, 2022
    Inventor: Kenji YASUDA
  • Publication number: 20220147069
    Abstract: A gas safety device includes flow path, shutoff valve that shuts off flow path, flow rate measurement unit that measures a flow rate of gas, gas-side absolute pressure sensor that measures absolute pressure of the gas, atmosphere-side absolute pressure sensor that measures absolute pressure of atmospheric pressure, and pressure value transition detector that detects a transition state of the absolute pressure measured by gas-side absolute pressure sensor. Further provided are sensor drive controller that controls driving of atmosphere-side absolute pressure sensor in accordance with a value of pressure transition in pressure value transition detector, and gas pressure determination unit that calculates gas supply pressure from a difference between pressure values measured when the two sensors are driven.
    Type: Application
    Filed: May 13, 2020
    Publication date: May 12, 2022
    Inventors: TAITI GYOUTOKU, KENJI YASUDA, KENTA UCHIDA
  • Publication number: 20210325217
    Abstract: An ultrasonic flowmeter includes flow path that has a rectangular cross section and through which a fluid to be measured flows, and partition plate that divides flow path into measurement flow path and non-measurement flow paths. In addition, the ultrasonic flowmeter includes a pair of ultrasonic sensors that are arranged upstream and downstream of a surface forming flow path and transmitting and receiving ultrasonic signals, and a flow rate calculator that detects a flow rate of the fluid to be measured based on a propagation time. The ultrasonic flowmeter includes openings that connect measurement flow path, non-measurement flow paths, and a space where the ultrasonic sensors is located, and the ultrasonic sensors mainly propagate ultrasonic waves only to measurement flow path through openings.
    Type: Application
    Filed: August 26, 2019
    Publication date: October 21, 2021
    Inventors: YUKIHIDE TAKAHASHI, HIROSHI NAKAI, KENJI YASUDA, TAKASHI KAYABA, YUKI ANAN
  • Publication number: 20210293593
    Abstract: An ultrasonic flow meter includes measurement flow path through which a fluid to be measured flows, and first ultrasonic sensor and second ultrasonic sensor that are disposed upstream and downstream in a first surface on measurement flow path and are capable of transmitting and receiving an ultrasonic signal. In addition, the ultrasonic flow meter includes a flow rate calculator that detects a flow rate of the fluid to be measured based on a propagation time, the propagation time being a time period from when the first ultrasonic sensor transmits the ultrasonic signal to cause the ultrasonic signal to propagate through the fluid to be measured and be reflected on a second surface facing the first surface at least once until when the second ultrasonic sensor receives the ultrasonic signal.
    Type: Application
    Filed: July 12, 2019
    Publication date: September 23, 2021
    Inventors: YUKIHIDE TAKAHASHI, HIROSHI NAKAI, KENJI YASUDA, TAKASHI KAYABA, YUKI ANAN
  • Publication number: 20210270650
    Abstract: An ultrasonic flowmeter includes measurement flow path and a pair of ultrasonic sensors arranged upstream and downstream on a first surface of measurement flow path. In addition, the ultrasonic flowmeter includes a flow rate calculator that detects a flow rate of a fluid to be measured based on a propagation time until ultrasonic signals transmitted from one of the pair of ultrasonic sensors propagate with one or more reflections on a second surface of measurement flow path facing the first surface, and are received by another one of the pair of ultrasonic sensors. Furthermore, measurement flow path has an inner wall surface provided with a draft of a mold for integral molding, and the pair of ultrasonic sensors are fixed to measurement flow path, incident angles of ultrasonic signals transmitted from the pair of the ultrasonic sensors on reflection surface of the second surface where the ultrasonic signals are reflected being equal.
    Type: Application
    Filed: July 25, 2019
    Publication date: September 2, 2021
    Inventors: YUKIHIDE TAKAHASHI, HIROSHI NAKAI, KENJI YASUDA, TAKASHI KAYABA, YUKI ANAN
  • Publication number: 20210270649
    Abstract: An ultrasonic flow meter includes measurement flow path where a cross section of a flow path through which a fluid to be measured flows is rectangular, one or more partition plates that divide measurement flow path into a plurality of layered flow paths, and a pair of ultrasonic sensors that are disposed upstream and downstream on the layered flow paths and are capable of transmitting and receiving an ultrasonic signal. In addition, the ultrasonic flow meter includes a flow rate measuring unit that detects a flow rate of the fluid to be measured based on a propagation time, the propagation time being a time period from when one of the ultrasonic sensors transmits the ultrasonic signal to cause the ultrasonic signal to propagate through the fluid to be measured until when an other one of the ultrasonic sensors receives the ultrasonic signal.
    Type: Application
    Filed: July 12, 2019
    Publication date: September 2, 2021
    Inventors: YUKIHIDE TAKAHASHI, HIROSHI NAKAI, KENJI YASUDA, TAKASHI KAYABA, YUKI ANAN
  • Publication number: 20210116945
    Abstract: Provided is a gas safety device including: flow path for flowing gas; flow rate measurement unit for measuring a flow rate of the gas flowing through flow path; absolute pressure sensor disposed inside flow path to measure an absolute pressure of the gas; absolute pressure sensor disposed outside flow path to measure an absolute pressure of atmospheric pressure; and gas pressure determination unit that measures a change in gas supply pressure from the absolute pressure of the gas and the absolute pressure of the atmospheric pressure measured by absolute pressure sensor and absolute pressure sensor, respectively. The gas safety device further includes shutoff valve that shuts off flow path, and control circuit that controls flow rate measurement unit and that causes shutoff valve to shut off flow path when determining abnormality from the flow rate of the gas measured by flow rate measurement unit or the change in gas supply pressure measured by gas pressure determination unit.
    Type: Application
    Filed: May 28, 2019
    Publication date: April 22, 2021
    Inventors: TAKASHI KAYABA, YUJI FUJII, KENJI YASUDA, MASANORI NAKAMURA, YUKI ANAN
  • Publication number: 20210010894
    Abstract: A gas safety device includes: flow path through which a gas flows; ultrasonic sensor for measuring a flow rate of the gas flowing through flow path; flow rate calculator that calculates a flow rate measurement data pieces from a measurement value of the flow rate measured by ultrasonic sensor; and leakage detector that detects a minor leakage of the gas. The gas safety device further includes: pulsation recognizer that recognizes that pulsation is occurring when a fluctuation in the flow rate measuring data pieces calculated by flow rate calculator is greater than or equal to a predetermined value; and pulsating flow rate corrector that corrects, when pulsation recognizer determines that the pulsation is occurring, the flow rate measurement data piece by a predetermined value. Furthermore, when pulsation recognizer determines that the pulsation is occurring, leakage detector determines whether a leakage is present using the flow rate measurement data piece corrected by pulsating flow rate corrector.
    Type: Application
    Filed: March 14, 2019
    Publication date: January 14, 2021
    Inventors: YUJI FUJII, TAKASHI KAYABA, YOSHIHIRO UEDA, KENJI YASUDA, TAITI GYOUTOKU, HIDEKI KINOSHITA
  • Patent number: 10591330
    Abstract: Flow rate measurement is performed with a propagation time by using a pair of ultrasonic wave oscillators which is provided in flow path through which a fluid to be measured flows, and is disposed so as to transmit and receive an ultrasonic wave signal by causing the ultrasonic wave signal to be reflected on an inner wall of flow path at least once. In addition, adjustment of an amplification rate is periodically performed by amplifier, which amplifies the ultrasonic wave signal received by each of the ultrasonic wave oscillators to a predetermined amplitude, and a difference between a previous amplification rate and a current amplification rate is a predetermined value or more, and the instantaneous flow rate calculated by flow rate calculation unit is a predetermined flow rate or less, the reference voltage is adjusted by reference voltage setting unit. With the configuration, the propagation time can be stably measured and deterioration of the maximum amplitude is prevented.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: March 17, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kazuki Shiota, Kenji Yasuda, Ryuji Iwamoto, Yuji Fujii, Yasuo Koba
  • Publication number: 20190078918
    Abstract: Flow rate measurement is performed with a propagation time by using a pair of ultrasonic wave oscillators which is provided in flow path through which a fluid to be measured flows, and is disposed so as to transmit and receive an ultrasonic wave signal by causing the ultrasonic wave signal to be reflected on an inner wall of flow path at least once. In addition, adjustment of an amplification rate is periodically performed by amplifier, which amplifies the ultrasonic wave signal received by each of the ultrasonic wave oscillators to a predetermined amplitude, and a difference between a previous amplification rate and a current amplification rate is a predetermined value or more, and the instantaneous flow rate calculated by flow rate calculation unit is a predetermined flow rate or less, the reference voltage is adjusted by reference voltage setting unit. With the configuration, the propagation time can be stably measured and deterioration of the maximum amplitude is prevented.
    Type: Application
    Filed: December 15, 2016
    Publication date: March 14, 2019
    Inventors: KAZUKI SHIOTA, KENJI YASUDA, RYUJI IWAMOTO, YUJI FUJII, YASUO KOBA
  • Patent number: 10113891
    Abstract: A flow rate measurement device includes a turbulence reduction component having opening portions and disposed between a measurement channel and a pair of hole portions across which a pair of ultrasonic transceivers are disposed from the measurement channel. The pair of opening portions of the turbulence reduction component each have frame pieces which are substantially identical in width. This makes it possible to reduce, with small attenuation of ultrasound, the occurrence of turbulence that is attributable to entrained flows in the pair of hole portions and is a cause of measurement error, thereby ensuring measurement accuracy.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: October 30, 2018
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hiroshi Nakai, Kenji Yasuda, Masato Satou, Hideaki Morihana, Yuji Fujii
  • Publication number: 20170343398
    Abstract: A flow rate measurement device includes a turbulence reduction component having opening portions and disposed between a measurement channel and a pair of hole portions across which a pair of ultrasonic transceivers are disposed from the measurement channel. The pair of opening portions of the turbulence reduction component each have frame pieces which are substantially identical in width. This makes it possible to reduce, with small attenuation of ultrasound, the occurrence of turbulence that is attributable to entrained flows in the pair of hole portions and is a cause of measurement error, thereby ensuring measurement accuracy.
    Type: Application
    Filed: March 11, 2016
    Publication date: November 30, 2017
    Inventors: Hiroshi NAKAI, Kenji YASUDA, Masato SATOU, Hideaki MORIHANA, Yuji FUJII
  • Patent number: 9494565
    Abstract: A hatching egg inspection apparatus includes: a plurality of light emitter, the light emitter being disposed two dimensionally at prescribed positions; light receiver, which are provided in a one-to-one relationship with the light emitter and each of which receives light from the corresponding light emitter; and an egg container, which is for arraying in advance a hatching egg between each of the light emitter and the light receiver corresponding thereto. Each hatching egg is inspected by the corresponding light receiver that receives, among the lights from all the light emitter, transmitted light that transmitted through the interior of the hatching egg. When one light emitter of the plurality of light emitter is emitting light, other of the light emitter within a prescribed range centered on the one light emitter do not emit light.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: November 15, 2016
    Assignee: NABEL Co., Ltd.
    Inventors: Kunio Nambu, Kenji Yasuda, Toyoaki Ohashi, Hiroshige Iguchi
  • Patent number: 9453748
    Abstract: A flow meter device includes: an inlet portion, into which a fluid flows; an outlet portion, from which the fluid flows out; a plurality of measurement passage portions provided parallel to each other between the inlet portion and the outlet portion; and at least one flow rate measurement unit, each flow rate measurement unit being configured to measure a flow rate of the fluid that flows through a passage in a corresponding one of the measurement passage portions. Shapes of passages in the respective measurement passage portions coincide with each other. The plurality of measurement passage portions include: the one measurement passage portion(s), which is/are each provided with the flow rate measurement unit; and the other measurement passage portion(s), which is/are not provided with the flow rate measurement unit.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: September 27, 2016
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Kenji Yasuda, Akihisa Adachi, Yuji Fujii, Yuji Nakabayashi, Yukio Sakaguchi, Hirokazu Gotou, Yasuharu Kawano, Aoi Watanabe
  • Patent number: 9447447
    Abstract: In the present invention, a cardiomyocyte cluster is disposed on a transparent substrate, and the quality of the cardiomyocytes is evaluated from the response of the cells to a forced pulsation stimulus applied to the cardiomyocytes. The cardiomyocyte cluster is disposed on the transparent substrate, and is exposed to the flow of a liquid containing an agent in a manner so that the agent acts on the cells, which configure a network. The extent of cardiac toxicity resulting from the agent is evaluated from measuring the fluctuations obtained from a comparison of adjacent cardiomyocytes of the network.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: September 20, 2016
    Assignees: National University Corporation Tokyo Medical and Dental University, LSI Medience Corporation
    Inventors: Kenji Yasuda, Tomoyuki Kaneko, Fumimasa Nomura
  • Publication number: 20160255820
    Abstract: A hatching egg inspection apparatus includes: a plurality of light emitter, the light emitter being disposed two dimensionally at prescribed positions; light receiver, which are provided in a one-to-one relationship with the light emitter and each of which receives light from the corresponding light emitter; and an egg container, which is for arraying in advance a hatching egg between each of the light emitter and the light receiver corresponding thereto. Each hatching egg is inspected by the corresponding light receiver that receives, among the lights from all the light emitter, transmitted light that transmitted through the interior of the hatching egg. When one light emitter of the plurality of light emitter is emitting light, other of the light emitter within a prescribed range centered on the one light emitter do not emit light.
    Type: Application
    Filed: May 17, 2016
    Publication date: September 8, 2016
    Inventors: Kunio NAMBU, Kenji YASUDA, Toyoaki OHASHI, Hiroshige IGUCHI
  • Patent number: D832123
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: October 30, 2018
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hiroshi Nakai, Kenji Yasuda, Kouichi Takemura
  • Patent number: D937696
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: December 7, 2021
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Hiroshi Nakai, Kenta Uchida, Kenji Yasuda
  • Patent number: D945292
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: March 8, 2022
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Hiroshi Nakai, Yudai Ishizaki, Kenji Yasuda