Patents by Inventor Kenneth E. Bertagnolli

Kenneth E. Bertagnolli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160229752
    Abstract: Embodiments disclosed herein relate to methods for measuring at least one pore characteristic of a polycrystalline diamond (“PCD”) element via porosimetry and, for example, using the measurement to adjust one or more process parameters for fabricating a PCD element and/or for quality control on such a PCD element. In an embodiment, a method for characterizing a PCD element is disclosed. The method includes providing a PCD element that includes a plurality of bonded diamond grains defining a plurality of pores therebetween. The method further includes conducting porosimetry on the PCD element to measure at least one pore characteristic of the plurality of pores of the PCD element. In an embodiment, the method additionally includes adjusting the one or more process parameters for fabricating the PCD element at least partially based on the measured at least one pore characteristic.
    Type: Application
    Filed: July 11, 2014
    Publication date: August 11, 2016
    Inventors: Kenneth E. Bertagnolli, Julie Ann Kidd, Dwight Randall Hiebert, Jay Walter McCloskey, Robert John Hyatt, Brian Thomas Park
  • Publication number: 20160230471
    Abstract: Embodiments of methods for at least partially relieving stress within a polycrystalline diamond (“PCD”) table of a polycrystalline diamond compact (“PDC”) by partitioning the substrate of the PDC, the PCD table of the PDC, or both. Partitioning may be achieved through grinding, machining, laser cutting, electro-discharge machining, or combinations thereof. PDC embodiments including at least one stress relieving partition are also disclosed.
    Type: Application
    Filed: April 20, 2016
    Publication date: August 11, 2016
    Inventors: Jair J. Gonzalez, Kenneth E. Bertagnolli, Debkumar Mukhopadhyay, David P. Miess, Mark P. Chapman, Ronald W. Ward, Nicholas Christensen, Damon B. Crockett, Mohammad N. Sani
  • Patent number: 9403260
    Abstract: Polycrystalline diamond compacts (“PDCs”) and methods of manufacturing such PDCs. In an embodiment, the PDC includes a polycrystalline diamond (“PCD”) table having at least a portion of a metal-solvent catalyst removed therefrom. Removing at least a portion of a metal-solvent catalyst from the PCD table may increase the porosity of the PCD table relative to a PCD table that has not been treated to remove the metal-solvent catalyst. Likewise, removing at least a portion of a metal-solvent catalyst from the PCD table may decrease the specific magnetic saturation and increase the coercivity of the PCD table relative to a PCD table that has not been treated to remove the metal-solvent catalyst.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: August 2, 2016
    Assignee: US Synthetic Corporation
    Inventors: Stephen R. Adams, Debkumar Mukhopadhyay, Kenneth E. Bertagnolli
  • Patent number: 9404308
    Abstract: Some embodiments relate to cutting element assemblies including a superabrasive cutting element that may be axially compressed to enhance the damage tolerance thereof, enclosed in an enclosure that exposes the superabrasive cutting element therethrough, enclosed in an enclosure that restricts rotation of the superabrasive cutting element, or combinations of the foregoing. Additionally, some embodiments relate to cutting element assemblies in which a superabrasive cutting element is mechanically fastened to a base, such as a substrate or directly to a bit body of a rotary drill bit. Some embodiments also relate to cutting element assemblies including one or more superabrasive cutting elements that are rotatable about a longitudinal axis of the cutting element assembly, that may be axially compressed to enhance the damage tolerance thereof, that may be enclosed in an enclosure that exposes the superabrasive cutting element therethrough, or combinations thereof.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: August 2, 2016
    Assignee: US Synthetic Corporation
    Inventors: Jiang Qian, Debkumar Mukhopadhyay, Jason Wiggins, Kenneth E. Bertagnolli, Shawn C. Scott, Kevin Duy Nguyen, Michael A. Vail
  • Publication number: 20160207169
    Abstract: Embodiments of the invention relate to polycrystalline diamond compacts (“PDC”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, a PDC includes a polycrystalline diamond (“PCD”) table bonded to a substrate. At least a portion of the PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. The plurality of interstitial regions includes a metal-solvent catalyst. The plurality of diamond grains exhibit an average grain size of about 30 ?m or less. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit an average electrical conductivity of less than about 1200 S/m. Other embodiments are directed to PCD, employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Application
    Filed: March 24, 2016
    Publication date: July 21, 2016
    Inventors: Kenneth E. Bertagnolli, Jiang Qian, Jason K. Wiggins, Michael A. Vail, Debkumar Mukhopadhyay, Brandon P. Linford
  • Publication number: 20160186805
    Abstract: Bearing assemblies, apparatuses, and motor assemblies using the same are disclosed. In an embodiment, a bearing assembly may include a plurality of superhard bearing elements distributed circumferentially about an axis. Each of the superhard bearing elements may include a bearing surface. At least one of the plurality of superhard bearing elements may include at least one texture feature that may be formed in a lateral surface thereof. The bearing assembly may also include a support ring that carries the superhard bearing elements.
    Type: Application
    Filed: March 9, 2016
    Publication date: June 30, 2016
    Inventors: S. Barrett Peterson, Jair J. Gonzalez, Kenneth E. Bertagnolli, Debkumar Mukhopadhyay, David P. Miess, Mark P. Chapman, Ronald W. Ward, Nicholas Edward Christensen, Damon B. Crockett, Mohammad N. Sani
  • Publication number: 20160158918
    Abstract: In an embodiment, a polycrystalline diamond compact includes a substrate and a preformed polycrystalline diamond table bonded to the substrate. The table includes bonded diamond grains defining interstitial regions. The table includes an upper surface, a back surface bonded to the substrate, and at least one lateral surface extending therebetween. The table includes a first region extending inwardly from the upper surface and the lateral surface. The first region exhibits a first interstitial region concentration and includes at least one interstitial constituent disposed therein, which may be present in at least a residual amount and includes at least one metal carbonate and/or at least one metal oxide. The table includes a second bonding region adjacent to the substrate that extends inwardly from the back surface. The second bonding region exhibits a second interstitial region concentration that is greater than the first interstitial region concentration and includes a metallic infiltrant therein.
    Type: Application
    Filed: February 10, 2016
    Publication date: June 9, 2016
    Inventors: Jiang Qian, C. Eugene McMurray, Debkumar Mukhopadhyay, Jason K. Wiggins, Michael A. Vail, Kenneth E. Bertagnolli
  • Patent number: 9334694
    Abstract: Methods for at least partially relieving stress within a polycrystalline diamond (“PCD”) table of a polycrystalline diamond compact (“PDC”) include partitioning the substrate of the PDC, the PCD table of the PDC, or both. Partitioning may be achieved through grinding, machining, laser cutting, electro-discharge machining, or combinations thereof. PDCs may include at least one stress relieving partition.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: May 10, 2016
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Jair J. Gonzalez, Kenneth E. Bertagnolli, Debkumar Mukhopadhyay, David P. Miess, Mark P. Chapman, Ronald W. Ward, Nicholas Christensen, Damon B. Crockett, Mohammad N. Sani
  • Patent number: 9315881
    Abstract: Embodiments of the invention relate to polycrystalline diamond compacts (“PDC”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, a PDC includes a polycrystalline diamond (“PCD”) table bonded to a substrate. At least a portion of the PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. The plurality of interstitial regions includes a metal-solvent catalyst. The plurality of diamond grains exhibit an average grain size of about 30 ?m or less. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit an average electrical conductivity of less than about 1200 S/m. Other embodiments are directed to PCD, employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: April 19, 2016
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. Bertagnolli, Jiang Qian, Jason K. Wiggins, Michael A. Vail, Debkumar Mukhopadhyay, Brandon P. Linford
  • Patent number: 9316060
    Abstract: A polycrystalline diamond compact useful for wear, cutting, drilling, drawing and like applications is provided with a first diamond region remote from the working surface which has a metallic catalyzing material and a second diamond region adjacent to or including the working surface containing a non-metallic catalyst and the method of making such a compact is provided. This compact is particularly useful in high temperature operations, such as hard rock drilling because of the improved thermal stability at the working surface.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: April 19, 2016
    Assignee: US Synthetic Corporation
    Inventors: Kenneth E. Bertagnolli, Michael A. Vail
  • Patent number: 9297411
    Abstract: Bearing assemblies, apparatuses, and motor assemblies using the same are disclosed. In an embodiment, a bearing assembly may include a plurality of superhard bearing elements distributed circumferentially about an axis. Each of the superhard bearing elements may include a bearing surface. At least one of the plurality of superhard bearing elements may include at least one texture feature that may be formed in a lateral surface thereof. The bearing assembly may also include a support ring that carries the superhard bearing elements.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: March 29, 2016
    Assignee: US SYNTHETIC CORPORATION
    Inventors: S Barrett Peterson, Jair J. Gonzalez, Kenneth E. Bertagnolli, Debkumar Mukhopadhyay, David P. Miess, Mark P. Chapman, Ronald W. Ward, Nicholas Christensen, Damon B. Crockett, Mohammad N. Sani
  • Patent number: 9273381
    Abstract: In an embodiment, a polycrystalline diamond compact includes a substrate and a preformed polycrystalline diamond table bonded to the substrate. The table includes bonded diamond grains defining interstitial regions. The table includes an upper surface, a back surface bonded to the substrate, and at least one lateral surface extending therebetween. The table includes a first region extending inwardly from the upper surface and the lateral surface. The first region exhibits a first interstitial region concentration and includes at least one interstitial constituent disposed therein, which may be present in at least a residual amount and includes at least one metal carbonate and/or at least one metal oxide. The table includes a second bonding region adjacent to the substrate that extends inwardly from the back surface. The second bonding region exhibits a second interstitial region concentration that is greater than the first interstitial region concentration and includes a metallic infiltrant therein.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: March 1, 2016
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Jiang Qian, C. Eugene McMurray, Debkumar Mukhopadhyay, Jason K. Wiggins, Michael A. Vail, Kenneth E. Bertagnolli
  • Patent number: 9260923
    Abstract: In an embodiment, a superabrasive compact is disclosed in which a heat-absorbing material having a phase-transition temperature lower than a peak operating temperature of a superabrasive table of the superabrasive compact is positioned in the superabrasive compact. In some embodiments, the heat-absorbing material positioned between the substrate and the superabrasive table. In another embodiment, a rotary drill bit is also disclosed including a bit body and at least one cutting element including a substrate and a superabrasive table bonded to the substrate. At least one heat-absorbing material is positioned within the bit body at least proximate to the at least one cutting element.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: February 16, 2016
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. Bertagnolli, Jason Wiggins, Shawn C. Scott
  • Patent number: 9254554
    Abstract: Embodiments of the invention relate to polycrystalline diamond compacts (“PDC”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, PDC includes a sintered substantially single-phase polycrystalline diamond (“PCD”) body consisting essentially of bonded-together diamond grains exhibiting a morphology different than that of a PCD body formed by sintering diamond crystals. A substrate is bonded to the sintered substantially single-phase PCD body. Other embodiments are directed to methods of forming such PDCs, and various applications for such PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: February 9, 2016
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. Bertagnolli, C. Eugene McMurray
  • Publication number: 20150361727
    Abstract: Embodiments of the invention relate to polycrystalline diamond compacts (“PDCs”) including a polycrystalline diamond (“PCD”) table in which cobalt is alloyed with phosphorous to improve the thermal stability of the PCD table. In an embodiment, a PDC includes a substrate and a PCD table including an upper surface spaced from an interfacial surface that is bonded to the substrate. The PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. The PCD table further includes an alloy comprising at least one Group VIII metal and phosphorous. The alloy is disposed in at least a portion of the plurality of interstitial regions.
    Type: Application
    Filed: June 13, 2014
    Publication date: December 17, 2015
    Inventors: Debkumar Mukhopadhyay, Kenneth E. Bertagnolli, Cody William Knuteson, Kevin Duy Nguyen
  • Patent number: 9194824
    Abstract: Polycrystalline diamond (“PCD”) anvils and associated ultra-high pressure apparatuses employing such anvils. The PCD anvils include an anvil body defining an anvil face. The anvil body comprises a plurality of diamond grains defining a plurality of interstitial regions, with a metal-solvent catalyst occupying at least a portion of the plurality of interstitial regions. The plurality and diamond grains and the metal-solvent catalyst of the PCD collectively exhibit a coercivity of about 115 Oe or more and a specific magnetic saturation of about 15 G·cm3/g or less.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: November 24, 2015
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Jiang Qian, Kenneth E. Bertagnolli
  • Patent number: 9134275
    Abstract: Embodiments of the invention relate to polycrystalline diamond (“PCD”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, PCD includes a plurality of diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst occupies at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oersteads or more and a specific magnetic saturation of about 15 Gauss·cm3/grams or less. Other embodiments are directed to polycrystalline diamond compacts (“PDCs”) employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: September 15, 2015
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. Bertagnolli, Jiang Qian, Jason Wiggins, Michael A. Vail, Debkumar Mukhopadhyay
  • Patent number: 9116094
    Abstract: In an embodiment, a method of non-destructively testing a polycrystalline diamond (“PCD”) element includes providing a PCD element including a plurality of bonded diamond grains defining a plurality of interstitial regions, at least a portion of the plurality of interstitial regions including one or more interstitial constituents disposed therein. The method further includes exposing the PCD element to neutron radiation from a neutron radiation source, receiving a portion of the neutron radiation that passes through the PCD element, and determining at least one characteristic of the PCD element at least partially based on the portion of the neutron radiation received. For example, the at least one characteristic may be the presence and distribution of metal-solvent catalyst, residual metal-solvent catalyst, an infiltrant, residual infiltrant, or other interstitial constituents within a PCD element.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: August 25, 2015
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Debkumar Mukhopadhyay, Kenneth E. Bertagnolli
  • Patent number: 9103172
    Abstract: Embodiments of the invention relate to thermally-stable polycrystalline diamond compacts (“PDCs”), and methods of fabricating such PDCs. In an embodiment, a PDC includes a substrate and a pre-sintered polycrystalline diamond (“PCD”) table bonded to the substrate. The pre-sintered PCD table includes bonded diamond grains defining a plurality of interstitial regions. The pre-sintered PCD table further including a first region remote from the substrate including a nonmetallic catalyst and a metallic catalyst each of which is disposed interstitially between the bonded diamond grains thereof, and a second region bonded to the substrate including a metallic-catalyst infiltrant disposed interstitially between the bonded diamond grains thereof. A nonplanar boundary is located between the first region and the second region.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: August 11, 2015
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. Bertagnolli, Michael A. Vail
  • Publication number: 20150209745
    Abstract: Embodiments of the invention relate to methods of forming polycrystalline diamond compacts (“PDCs”), wherein the PDC includes a polycrystalline diamond (“PCD”) table in which at least one Group VIII metal is at least partially alloyed with phosphorus and/or at least one other alloying element to improve the thermal stability of the PCD table. The disclosed PDCs may be used in a variety of applications, such as rotary drill bits, machining equipment, and other articles and apparatuses.
    Type: Application
    Filed: April 2, 2015
    Publication date: July 30, 2015
    Inventors: Debkumar Mukhopadhyay, Kenneth E. Bertagnolli, Cody William Knuteson