Patents by Inventor Kenneth H. Valentine

Kenneth H. Valentine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7408160
    Abstract: A system for detecting and graphically displaying a contents of a fast-moving target object comprises: a radiation source, having a position such that at least a portion of radiation emitted from the radiation source passes through the fast-moving target object, the fast-moving target object having a variable velocity and acceleration while maintaining a substantially constant distance from the radiation source and being selected from the group consisting of: a vehicle, a cargo container and a railroad car; a velocity measuring device configured to measure the variable velocity of the fast-moving target object; a detector array comprising a plurality of photon detectors, having a position such that at least some of the at least a portion of the radiation passing through the target object is received thereby, the detector array having a variable count time according to the variable velocity and a grid unit size; a counter circuit coupled to the detector array for discretely counting a number of photons enterin
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: August 5, 2008
    Assignee: Science Applications International Corporation
    Inventors: Victor V. Verbinski, Scott T. Smith, Judith Maxwell, legal representative, Jeffrey M. Adams, Ryan Shyffer, Kenneth H. Valentine
  • Patent number: 7368717
    Abstract: A system for detecting and graphically displaying a contents of a fast-moving target object comprises: a radiation source, having a position such that at least a portion of radiation emitted from the radiation source passes through the fast-moving target object, the fast-moving target object having a variable velocity and acceleration while maintaining a substantially constant distance from the radiation source and being selected from the group consisting of: a vehicle, a cargo container and a railroad car; a velocity measuring device configured to measure the variable velocity of the fast-moving target object; a detector array comprising a plurality of photon detectors, having a position such that at least some of the at least a portion of the radiation passing through the target object is received thereby, the detector array having a variable count time according to the variable velocity and a grid unit size; a counter circuit coupled to the detector array for discretely counting a number of photons enterin
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: May 6, 2008
    Assignee: Science Applications International Corporation
    Inventors: Victor V. Verbinski, Scott T. Smith, Judith Maxwell, legal representative, Jeffrey M. Adams, Ryan Shyffer, Kenneth H. Valentine
  • Patent number: 7365332
    Abstract: A system for detecting and graphically displaying a contents of a fast-moving target object comprises: a radiation source, having a position such that at least a portion of radiation emitted from the radiation source passes through the fast-moving target object, the fast-moving target object having a variable velocity and acceleration while maintaining a substantially constant distance from the radiation source and being selected from the group consisting of: a vehicle, a cargo container and a railroad car; a velocity measuring device configured to measure the variable velocity of the fast-moving target object; a detector array comprising a plurality of photon detectors, having a position such that at least some of the at least a portion of the radiation passing through the target object is received thereby, the detector array having a variable count time according to the variable velocity and a grid unit size; a counter circuit coupled to the detector array for discretely counting a number of photons enterin
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: April 29, 2008
    Assignee: Science Applications International Corporation
    Inventors: Victor V. Verbinski, Scott T. Smith, Judith Maxwell, legal representative, Jeffrey M. Adams, Ryan Shyffer, Kenneth H. Valentine
  • Publication number: 20040251415
    Abstract: A system for detecting and graphically displaying a contents of a fast-moving target object comprises: a radiation source, having a position such that at least a portion of radiation emitted from the radiation source passes through the fast-moving target object, the fast-moving target object having a variable velocity and acceleration while maintaining a substantially constant distance from the radiation source and being selected from the group consisting of: a vehicle, a cargo container and a railroad car; a velocity measuring device configured to measure the variable velocity of the fast-moving target object; a detector array comprising a plurality of photon detectors, having a position such that at least some of the at least a portion of the radiation passing through the target object is received thereby, the detector array having a variable count time according to the variable velocity and a grid unit size; a counter circuit coupled to the detector array for discretely counting a number of photons enterin
    Type: Application
    Filed: April 28, 2004
    Publication date: December 16, 2004
    Inventors: Victor V. Verbinski, Scott T. Smith, Kenneth H. Valentine, Judith Maxwell, Jeffrey M. Adams, Ryan Shyffer
  • Patent number: 6552346
    Abstract: A system and method of density detection in a target object involve irradiating the target object, detecting a first and second discrete number of photons penetrating the target object through respective first and second prescribed volumes and entering respective first and second radiation detectors. First and second numbers of photons detected by the first and second radiation detectors are counted, and a display output signal is generated in response to the first and second numbers. A graphical representation of the densities within the first and second volumes of the target object is displayed.
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: April 22, 2003
    Assignee: Science Applications International Corporation
    Inventors: Victor V. Verbinski, Scott T. Smith, Kenneth H. Valentine, Victor J. Orphan
  • Patent number: 6507025
    Abstract: A system for detecting and graphically displaying a contents of a fast-moving target object comprises: a radiation source, having a position such that at least a portion of radiation emitted from the radiation source passes through the fast-moving target object, the fast-moving target object having a variable velocity and acceleration while maintaining a substantially constant distance from the radiation source and being selected from the group consisting of: a vehicle, a cargo container and a railroad car; a velocity measuring device configured to measure the variable velocity of the fast-moving target object; a detector array comprising a plurality of photon detectors, having a position such that at least some of the at least a portion of the radiation passing through the target object is received thereby, the detector array having a variable count time according to the variable velocity and a grid unit size; a counter circuit coupled to the detector array for discretely counting a number of photons enterin
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: January 14, 2003
    Assignee: Science Applications International Corporation
    Inventors: Victor V. Verbinski, Kenneth H. Valentine, Eric Ackermann, Victor J. Orphan, Jeff Adams
  • Publication number: 20010020682
    Abstract: A system and method of density detection in a target object involve irradiating the target object, detecting a first and second discrete number of photons penetrating the target object through respective first and second prescribed volumes and entering respective first and second radiation detectors. First and second numbers of photons detected by the first and second radiation detectors are counted, and a display output signal is generated in response to the first and second numbers. A graphical representation of the densities within the first and second volumes of the target object is displayed.
    Type: Application
    Filed: April 12, 2001
    Publication date: September 13, 2001
    Inventors: Victor V. Verbinski, Scott T. Smith, Kenneth H. Valentine, Victor J. Orphan
  • Patent number: 6255654
    Abstract: A system and method of density detection in a target object involve irradiating the target object, detecting a first and second discrete number of photons penetrating the target object through respective first and second prescribed volumes and entering respective first and second radiation detectors. First and second numbers of photons detected by the first and second radiation detectors are counted, and a display output signal is generated in response to the first and second numbers. A graphical representation of the densities within the first and second volumes of the target object is displayed.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: July 3, 2001
    Assignee: Science Applications International Corporation
    Inventors: Victor V. Verbinski, Scott T. Smith, Kenneth H. Valentine, Victor J. Orphan
  • Patent number: 5206513
    Abstract: A radiation measurement apparatus and method extends the measurement range of a single Geiger Mueller tube (GMT). The apparatus may operate in a either a conventional mode, used to measure low radiation levels, e.g. background radiation, or an extended range geiger (ERG) mode, used to measure high radiation levels. Both modes utilize the same GMT and basic operating circuitry, including a power supply for generating a GMT anode voltage, a GMT anode voltage control circuit, a GMT trigger circuit, a clock circuit, and a GMT pulse counter circuit. In the conventional mode, the radiation rate is determined as a function of the number of GMT pulses counted over a prescribed time period. In the ERG mode, an additional counter is employed to count trial intervals of a prescribed duration.
    Type: Grant
    Filed: July 13, 1990
    Date of Patent: April 27, 1993
    Assignee: Science Applications International Corporation
    Inventors: Kenneth H. Valentine, John M. Wettroth
  • Patent number: 5132543
    Abstract: Small, light-weight portable radiation measurement apparatus provides accurate quantitative measurment of radiation dosage and dosage rates. Such apparatus, referred to as a dosimeter, is housed in a ruggedized housing that is only about 1/2 the volume of a package of cigarettes, may easily be clipped to clothing or carried in a shirt pocket, and is powered by a conventional alkaline AA-sized battery. Included in the housing are a geiger tube for detecting radiation, a high voltage power supply for providing power to the geiger tube, a counting circuit for counting geiger pulses generated by the geiger tube, a microprocessor circuit for processing the geiger pulses in accordance with a prescribed program to determine the does or dosage rate to which the geiger tube has been exposed, and a digital display that displays the dosage rates thus determined. The microprocessor program is stored in memory circuits, included as part of the microprocessor circuit.
    Type: Grant
    Filed: January 11, 1991
    Date of Patent: July 21, 1992
    Assignee: Science Applications International Corporation
    Inventors: Kenneth H. Valentine, John M. Wettroth
  • Patent number: 5012113
    Abstract: A system for monitoring moving objects, such as the flight of honeybees and other insects, using a pulsed laser light source. This system has a self-powered micro-miniaturized transmitting unit powered, in the preferred embodiment, with an array solar cells. This transmitting unit is attached to the object to be monitored. These solar cells provide current to a storage energy capacitor to produce, for example, five volts for the operation of the transmitter. In the simplest embodiment, the voltage on the capacitor operates a pulse generator to provide a pulsed energizing signal to one or more very small laser diodes. The pulsed light is then received at a receiving base station using substantially standard means which converts the light to an electrical signal for processing in a microprocessor to create the information as to the movement of the object. In the case of a unit for monitoring honeybees and other insects, the transmitting unit weighs less than 50 mg, and has a size no larger than 1.times.3.times.
    Type: Grant
    Filed: April 28, 1989
    Date of Patent: April 30, 1991
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Kenneth H. Valentine, Diedre D. Falter, Kelly G. Falter
  • Patent number: 4876721
    Abstract: A method and device have been provided for distinguishing Africanized honeybees from European honeybees. The method is based on the discovery of a distinct difference in the acoustical signatures of these two species of honeybees in flight. The European honeybee signature has a fundamental power peak in the 210 to 240 Hz range while the Africanized honeybee signature has a fundamental power peak in the 260 to 290 Hz range. The acoustic signal produced by honeybees is analyzed by means of a detecting device to quickly determine the honeybee species through the detection of the presence of frequencies in one of these distinct ranges. The device includes a microphone for acoustical signal detection which feeds the detected signal into a frequency analyzer which is designed to detect the presence of either of the known fundamental wingbeat frequencies unique to the acoustical signatures of these species as an indication of the identity of the species and indicate the species identity on a readout device.
    Type: Grant
    Filed: March 3, 1988
    Date of Patent: October 24, 1989
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Howard T. Kerr, Michael E. Buchanan, Kenneth H. Valentine
  • Patent number: 4767929
    Abstract: An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.
    Type: Grant
    Filed: October 6, 1986
    Date of Patent: August 30, 1988
    Assignee: The United States of America as represented by the United State Department of Energy
    Inventor: Kenneth H. Valentine
  • Patent number: 4404164
    Abstract: A neutron flux monitor is provided which consists of a plurality of fission counters arranged as spaced-apart point detectors along a delay line. As a fission event occurs in any one of the counters, two delayed current pulses are generated at the output of the delay line. The time separation of the pulses identifies the counter in which the particular fission event occured. Neutron flux profiles of reactor cores can be more accurately measured as a result.
    Type: Grant
    Filed: September 15, 1981
    Date of Patent: September 13, 1983
    Inventors: Manfred K. Kopp, Kenneth H. Valentine
  • Patent number: 4390786
    Abstract: An atomic fission counting apparatus used for neutron detection is provided with spirally curved electrode plates uniformly spaced apart in a circular array and coated with fissile material.
    Type: Grant
    Filed: April 24, 1981
    Date of Patent: June 28, 1983
    Assignee: The United States of America as represented by The United States Department of Energy
    Inventors: Manfred K. Kopp, Kenneth H. Valentine
  • Patent number: 4021669
    Abstract: A gamma analyzer system is provided for the analysis of nuclear fuel microspheres and other radioactive particles. The system consists of an analysis turntable with means for loading, in sequence, a plurality of stations within the turntable; a gamma ray detector for determining the spectrum of a sample in one section; means for analyzing the spectrum; and a receiver turntable to collect the analyzed material in stations according to the spectrum analysis. Accordingly, particles may be sorted according to their quality; e.g., fuel particles with fractured coatings may be separated from those that are not fractured, or according to other properties.
    Type: Grant
    Filed: March 15, 1976
    Date of Patent: May 3, 1977
    Assignee: The United States of America as represented by the United States Energy Research and Development Administration
    Inventors: Kenneth H. Valentine, Ernest L. Long, Jr., Melvin G. Willey